from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6384, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([18,9,0,12,14]))
pari: [g,chi] = znchar(Mod(6379,6384))
Basic properties
Modulus: | \(6384\) | |
Conductor: | \(2128\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(36\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{2128}(2123,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 6384.np
\(\chi_{6384}(67,\cdot)\) \(\chi_{6384}(667,\cdot)\) \(\chi_{6384}(1675,\cdot)\) \(\chi_{6384}(1915,\cdot)\) \(\chi_{6384}(3091,\cdot)\) \(\chi_{6384}(3187,\cdot)\) \(\chi_{6384}(3259,\cdot)\) \(\chi_{6384}(3859,\cdot)\) \(\chi_{6384}(4867,\cdot)\) \(\chi_{6384}(5107,\cdot)\) \(\chi_{6384}(6283,\cdot)\) \(\chi_{6384}(6379,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{36})\) |
Fixed field: | Number field defined by a degree 36 polynomial |
Values on generators
\((799,4789,2129,913,1009)\) → \((-1,i,1,e\left(\frac{1}{3}\right),e\left(\frac{7}{18}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 6384 }(6379, a) \) | \(1\) | \(1\) | \(e\left(\frac{5}{36}\right)\) | \(-i\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{9}\right)\) |
sage: chi.jacobi_sum(n)