sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6480, base_ring=CyclotomicField(108))
M = H._module
chi = DirichletCharacter(H, M([0,81,4,54]))
pari:[g,chi] = znchar(Mod(2029,6480))
Modulus: | 6480 | |
Conductor: | 6480 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 108 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ6480(229,⋅)
χ6480(349,⋅)
χ6480(589,⋅)
χ6480(709,⋅)
χ6480(949,⋅)
χ6480(1069,⋅)
χ6480(1309,⋅)
χ6480(1429,⋅)
χ6480(1669,⋅)
χ6480(1789,⋅)
χ6480(2029,⋅)
χ6480(2149,⋅)
χ6480(2389,⋅)
χ6480(2509,⋅)
χ6480(2749,⋅)
χ6480(2869,⋅)
χ6480(3109,⋅)
χ6480(3229,⋅)
χ6480(3469,⋅)
χ6480(3589,⋅)
χ6480(3829,⋅)
χ6480(3949,⋅)
χ6480(4189,⋅)
χ6480(4309,⋅)
χ6480(4549,⋅)
χ6480(4669,⋅)
χ6480(4909,⋅)
χ6480(5029,⋅)
χ6480(5269,⋅)
χ6480(5389,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(2431,1621,6401,1297) → (1,−i,e(271),−1)
a |
−1 | 1 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 |
χ6480(2029,a) |
1 | 1 | e(2716) | e(10825) | e(1085) | e(1813) | e(361) | e(2711) | e(10867) | e(2720) | e(3629) | e(5425) |
sage:chi.jacobi_sum(n)