Properties

Label 6480.2029
Modulus 64806480
Conductor 64806480
Order 108108
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6480, base_ring=CyclotomicField(108)) M = H._module chi = DirichletCharacter(H, M([0,81,4,54]))
 
Copy content pari:[g,chi] = znchar(Mod(2029,6480))
 

Basic properties

Modulus: 64806480
Conductor: 64806480
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 108108
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 6480.fs

χ6480(229,)\chi_{6480}(229,\cdot) χ6480(349,)\chi_{6480}(349,\cdot) χ6480(589,)\chi_{6480}(589,\cdot) χ6480(709,)\chi_{6480}(709,\cdot) χ6480(949,)\chi_{6480}(949,\cdot) χ6480(1069,)\chi_{6480}(1069,\cdot) χ6480(1309,)\chi_{6480}(1309,\cdot) χ6480(1429,)\chi_{6480}(1429,\cdot) χ6480(1669,)\chi_{6480}(1669,\cdot) χ6480(1789,)\chi_{6480}(1789,\cdot) χ6480(2029,)\chi_{6480}(2029,\cdot) χ6480(2149,)\chi_{6480}(2149,\cdot) χ6480(2389,)\chi_{6480}(2389,\cdot) χ6480(2509,)\chi_{6480}(2509,\cdot) χ6480(2749,)\chi_{6480}(2749,\cdot) χ6480(2869,)\chi_{6480}(2869,\cdot) χ6480(3109,)\chi_{6480}(3109,\cdot) χ6480(3229,)\chi_{6480}(3229,\cdot) χ6480(3469,)\chi_{6480}(3469,\cdot) χ6480(3589,)\chi_{6480}(3589,\cdot) χ6480(3829,)\chi_{6480}(3829,\cdot) χ6480(3949,)\chi_{6480}(3949,\cdot) χ6480(4189,)\chi_{6480}(4189,\cdot) χ6480(4309,)\chi_{6480}(4309,\cdot) χ6480(4549,)\chi_{6480}(4549,\cdot) χ6480(4669,)\chi_{6480}(4669,\cdot) χ6480(4909,)\chi_{6480}(4909,\cdot) χ6480(5029,)\chi_{6480}(5029,\cdot) χ6480(5269,)\chi_{6480}(5269,\cdot) χ6480(5389,)\chi_{6480}(5389,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ108)\Q(\zeta_{108})
Fixed field: Number field defined by a degree 108 polynomial (not computed)

Values on generators

(2431,1621,6401,1297)(2431,1621,6401,1297)(1,i,e(127),1)(1,-i,e\left(\frac{1}{27}\right),-1)

First values

aa 1-11177111113131717191923232929313137374141
χ6480(2029,a) \chi_{ 6480 }(2029, a) 1111e(1627)e\left(\frac{16}{27}\right)e(25108)e\left(\frac{25}{108}\right)e(5108)e\left(\frac{5}{108}\right)e(1318)e\left(\frac{13}{18}\right)e(136)e\left(\frac{1}{36}\right)e(1127)e\left(\frac{11}{27}\right)e(67108)e\left(\frac{67}{108}\right)e(2027)e\left(\frac{20}{27}\right)e(2936)e\left(\frac{29}{36}\right)e(2554)e\left(\frac{25}{54}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ6480(2029,a)   \chi_{ 6480 }(2029,a) \; at   a=\;a = e.g. 2