Properties

Label 6480.2389
Modulus $6480$
Conductor $6480$
Order $108$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6480, base_ring=CyclotomicField(108))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,27,52,54]))
 
pari: [g,chi] = znchar(Mod(2389,6480))
 

Basic properties

Modulus: \(6480\)
Conductor: \(6480\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(108\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 6480.fs

\(\chi_{6480}(229,\cdot)\) \(\chi_{6480}(349,\cdot)\) \(\chi_{6480}(589,\cdot)\) \(\chi_{6480}(709,\cdot)\) \(\chi_{6480}(949,\cdot)\) \(\chi_{6480}(1069,\cdot)\) \(\chi_{6480}(1309,\cdot)\) \(\chi_{6480}(1429,\cdot)\) \(\chi_{6480}(1669,\cdot)\) \(\chi_{6480}(1789,\cdot)\) \(\chi_{6480}(2029,\cdot)\) \(\chi_{6480}(2149,\cdot)\) \(\chi_{6480}(2389,\cdot)\) \(\chi_{6480}(2509,\cdot)\) \(\chi_{6480}(2749,\cdot)\) \(\chi_{6480}(2869,\cdot)\) \(\chi_{6480}(3109,\cdot)\) \(\chi_{6480}(3229,\cdot)\) \(\chi_{6480}(3469,\cdot)\) \(\chi_{6480}(3589,\cdot)\) \(\chi_{6480}(3829,\cdot)\) \(\chi_{6480}(3949,\cdot)\) \(\chi_{6480}(4189,\cdot)\) \(\chi_{6480}(4309,\cdot)\) \(\chi_{6480}(4549,\cdot)\) \(\chi_{6480}(4669,\cdot)\) \(\chi_{6480}(4909,\cdot)\) \(\chi_{6480}(5029,\cdot)\) \(\chi_{6480}(5269,\cdot)\) \(\chi_{6480}(5389,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{108})$
Fixed field: Number field defined by a degree 108 polynomial (not computed)

Values on generators

\((2431,1621,6401,1297)\) → \((1,i,e\left(\frac{13}{27}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 6480 }(2389, a) \) \(1\)\(1\)\(e\left(\frac{19}{27}\right)\)\(e\left(\frac{55}{108}\right)\)\(e\left(\frac{11}{108}\right)\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{31}{36}\right)\)\(e\left(\frac{8}{27}\right)\)\(e\left(\frac{61}{108}\right)\)\(e\left(\frac{17}{27}\right)\)\(e\left(\frac{35}{36}\right)\)\(e\left(\frac{1}{54}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 6480 }(2389,a) \;\) at \(\;a = \) e.g. 2