sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(675, base_ring=CyclotomicField(180))
M = H._module
chi = DirichletCharacter(H, M([110,27]))
pari:[g,chi] = znchar(Mod(158,675))
Modulus: | 675 | |
Conductor: | 675 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 180 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ675(2,⋅)
χ675(23,⋅)
χ675(38,⋅)
χ675(47,⋅)
χ675(77,⋅)
χ675(83,⋅)
χ675(92,⋅)
χ675(113,⋅)
χ675(122,⋅)
χ675(128,⋅)
χ675(137,⋅)
χ675(158,⋅)
χ675(167,⋅)
χ675(173,⋅)
χ675(203,⋅)
χ675(212,⋅)
χ675(227,⋅)
χ675(248,⋅)
χ675(263,⋅)
χ675(272,⋅)
χ675(302,⋅)
χ675(308,⋅)
χ675(317,⋅)
χ675(338,⋅)
χ675(347,⋅)
χ675(353,⋅)
χ675(362,⋅)
χ675(383,⋅)
χ675(392,⋅)
χ675(398,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(326,352) → (e(1811),e(203))
a |
−1 | 1 | 2 | 4 | 7 | 8 | 11 | 13 | 14 | 16 | 17 | 19 |
χ675(158,a) |
1 | 1 | e(180137) | e(9047) | e(3619) | e(6017) | e(9031) | e(180133) | e(4513) | e(452) | e(607) | e(301) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)