Properties

Label 675.212
Modulus 675675
Conductor 675675
Order 180180
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(180))
 
M = H._module
 
chi = DirichletCharacter(H, M([110,81]))
 
pari: [g,chi] = znchar(Mod(212,675))
 

Basic properties

Modulus: 675675
Conductor: 675675
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 180180
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 675.bi

χ675(2,)\chi_{675}(2,\cdot) χ675(23,)\chi_{675}(23,\cdot) χ675(38,)\chi_{675}(38,\cdot) χ675(47,)\chi_{675}(47,\cdot) χ675(77,)\chi_{675}(77,\cdot) χ675(83,)\chi_{675}(83,\cdot) χ675(92,)\chi_{675}(92,\cdot) χ675(113,)\chi_{675}(113,\cdot) χ675(122,)\chi_{675}(122,\cdot) χ675(128,)\chi_{675}(128,\cdot) χ675(137,)\chi_{675}(137,\cdot) χ675(158,)\chi_{675}(158,\cdot) χ675(167,)\chi_{675}(167,\cdot) χ675(173,)\chi_{675}(173,\cdot) χ675(203,)\chi_{675}(203,\cdot) χ675(212,)\chi_{675}(212,\cdot) χ675(227,)\chi_{675}(227,\cdot) χ675(248,)\chi_{675}(248,\cdot) χ675(263,)\chi_{675}(263,\cdot) χ675(272,)\chi_{675}(272,\cdot) χ675(302,)\chi_{675}(302,\cdot) χ675(308,)\chi_{675}(308,\cdot) χ675(317,)\chi_{675}(317,\cdot) χ675(338,)\chi_{675}(338,\cdot) χ675(347,)\chi_{675}(347,\cdot) χ675(353,)\chi_{675}(353,\cdot) χ675(362,)\chi_{675}(362,\cdot) χ675(383,)\chi_{675}(383,\cdot) χ675(392,)\chi_{675}(392,\cdot) χ675(398,)\chi_{675}(398,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ180)\Q(\zeta_{180})
Fixed field: Number field defined by a degree 180 polynomial (not computed)

Values on generators

(326,352)(326,352)(e(1118),e(920))(e\left(\frac{11}{18}\right),e\left(\frac{9}{20}\right))

First values

aa 1-11122447788111113131414161617171919
χ675(212,a) \chi_{ 675 }(212, a) 1111e(11180)e\left(\frac{11}{180}\right)e(1190)e\left(\frac{11}{90}\right)e(136)e\left(\frac{1}{36}\right)e(1160)e\left(\frac{11}{60}\right)e(1390)e\left(\frac{13}{90}\right)e(79180)e\left(\frac{79}{180}\right)e(445)e\left(\frac{4}{45}\right)e(1145)e\left(\frac{11}{45}\right)e(160)e\left(\frac{1}{60}\right)e(1330)e\left(\frac{13}{30}\right)
sage: chi.jacobi_sum(n)
 
χ675(212,a)   \chi_{ 675 }(212,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ675(212,))   \tau_{ a }( \chi_{ 675 }(212,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ675(212,),χ675(n,))   J(\chi_{ 675 }(212,·),\chi_{ 675 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ675(212,))  K(a,b,\chi_{ 675 }(212,·)) \; at   a,b=\; a,b = e.g. 1,2