Properties

Label 676.47
Modulus $676$
Conductor $676$
Order $52$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(676, base_ring=CyclotomicField(52))
 
M = H._module
 
chi = DirichletCharacter(H, M([26,21]))
 
pari: [g,chi] = znchar(Mod(47,676))
 

Basic properties

Modulus: \(676\)
Conductor: \(676\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(52\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 676.s

\(\chi_{676}(31,\cdot)\) \(\chi_{676}(47,\cdot)\) \(\chi_{676}(83,\cdot)\) \(\chi_{676}(135,\cdot)\) \(\chi_{676}(151,\cdot)\) \(\chi_{676}(187,\cdot)\) \(\chi_{676}(203,\cdot)\) \(\chi_{676}(255,\cdot)\) \(\chi_{676}(291,\cdot)\) \(\chi_{676}(307,\cdot)\) \(\chi_{676}(343,\cdot)\) \(\chi_{676}(359,\cdot)\) \(\chi_{676}(395,\cdot)\) \(\chi_{676}(411,\cdot)\) \(\chi_{676}(447,\cdot)\) \(\chi_{676}(463,\cdot)\) \(\chi_{676}(499,\cdot)\) \(\chi_{676}(515,\cdot)\) \(\chi_{676}(551,\cdot)\) \(\chi_{676}(567,\cdot)\) \(\chi_{676}(603,\cdot)\) \(\chi_{676}(619,\cdot)\) \(\chi_{676}(655,\cdot)\) \(\chi_{676}(671,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{52})$
Fixed field: Number field defined by a degree 52 polynomial

Values on generators

\((339,509)\) → \((-1,e\left(\frac{21}{52}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(17\)\(19\)\(21\)\(23\)
\( \chi_{ 676 }(47, a) \) \(1\)\(1\)\(e\left(\frac{15}{26}\right)\)\(e\left(\frac{33}{52}\right)\)\(e\left(\frac{37}{52}\right)\)\(e\left(\frac{2}{13}\right)\)\(e\left(\frac{5}{52}\right)\)\(e\left(\frac{11}{52}\right)\)\(e\left(\frac{25}{26}\right)\)\(-i\)\(e\left(\frac{15}{52}\right)\)\(1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 676 }(47,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 676 }(47,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 676 }(47,·),\chi_{ 676 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 676 }(47,·)) \;\) at \(\; a,b = \) e.g. 1,2