Basic properties
Modulus: | \(676\) | |
Conductor: | \(676\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(156\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 676.w
\(\chi_{676}(7,\cdot)\) \(\chi_{676}(11,\cdot)\) \(\chi_{676}(15,\cdot)\) \(\chi_{676}(59,\cdot)\) \(\chi_{676}(63,\cdot)\) \(\chi_{676}(67,\cdot)\) \(\chi_{676}(71,\cdot)\) \(\chi_{676}(111,\cdot)\) \(\chi_{676}(115,\cdot)\) \(\chi_{676}(119,\cdot)\) \(\chi_{676}(123,\cdot)\) \(\chi_{676}(163,\cdot)\) \(\chi_{676}(167,\cdot)\) \(\chi_{676}(171,\cdot)\) \(\chi_{676}(175,\cdot)\) \(\chi_{676}(215,\cdot)\) \(\chi_{676}(219,\cdot)\) \(\chi_{676}(223,\cdot)\) \(\chi_{676}(227,\cdot)\) \(\chi_{676}(267,\cdot)\) \(\chi_{676}(271,\cdot)\) \(\chi_{676}(275,\cdot)\) \(\chi_{676}(279,\cdot)\) \(\chi_{676}(323,\cdot)\) \(\chi_{676}(327,\cdot)\) \(\chi_{676}(331,\cdot)\) \(\chi_{676}(371,\cdot)\) \(\chi_{676}(375,\cdot)\) \(\chi_{676}(379,\cdot)\) \(\chi_{676}(383,\cdot)\) ...
Related number fields
Field of values: | $\Q(\zeta_{156})$ |
Fixed field: | Number field defined by a degree 156 polynomial (not computed) |
Values on generators
\((339,509)\) → \((-1,e\left(\frac{61}{156}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(15\) | \(17\) | \(19\) | \(21\) | \(23\) |
\( \chi_{ 676 }(223, a) \) | \(1\) | \(1\) | \(e\left(\frac{77}{78}\right)\) | \(e\left(\frac{27}{52}\right)\) | \(e\left(\frac{53}{156}\right)\) | \(e\left(\frac{38}{39}\right)\) | \(e\left(\frac{121}{156}\right)\) | \(e\left(\frac{79}{156}\right)\) | \(e\left(\frac{7}{78}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{17}{52}\right)\) | \(e\left(\frac{1}{3}\right)\) |