sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(676, base_ring=CyclotomicField(156))
M = H._module
chi = DirichletCharacter(H, M([78,113]))
pari:[g,chi] = znchar(Mod(279,676))
Modulus: | 676 | |
Conductor: | 676 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 156 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ676(7,⋅)
χ676(11,⋅)
χ676(15,⋅)
χ676(59,⋅)
χ676(63,⋅)
χ676(67,⋅)
χ676(71,⋅)
χ676(111,⋅)
χ676(115,⋅)
χ676(119,⋅)
χ676(123,⋅)
χ676(163,⋅)
χ676(167,⋅)
χ676(171,⋅)
χ676(175,⋅)
χ676(215,⋅)
χ676(219,⋅)
χ676(223,⋅)
χ676(227,⋅)
χ676(267,⋅)
χ676(271,⋅)
χ676(275,⋅)
χ676(279,⋅)
χ676(323,⋅)
χ676(327,⋅)
χ676(331,⋅)
χ676(371,⋅)
χ676(375,⋅)
χ676(379,⋅)
χ676(383,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(339,509) → (−1,e(156113))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 15 | 17 | 19 | 21 | 23 |
χ676(279,a) |
1 | 1 | e(7825) | e(5227) | e(1561) | e(3925) | e(15617) | e(156131) | e(7859) | e(127) | e(5217) | e(32) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)