Properties

Label 676.279
Modulus 676676
Conductor 676676
Order 156156
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(676, base_ring=CyclotomicField(156)) M = H._module chi = DirichletCharacter(H, M([78,113]))
 
Copy content pari:[g,chi] = znchar(Mod(279,676))
 

Basic properties

Modulus: 676676
Conductor: 676676
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 156156
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 676.w

χ676(7,)\chi_{676}(7,\cdot) χ676(11,)\chi_{676}(11,\cdot) χ676(15,)\chi_{676}(15,\cdot) χ676(59,)\chi_{676}(59,\cdot) χ676(63,)\chi_{676}(63,\cdot) χ676(67,)\chi_{676}(67,\cdot) χ676(71,)\chi_{676}(71,\cdot) χ676(111,)\chi_{676}(111,\cdot) χ676(115,)\chi_{676}(115,\cdot) χ676(119,)\chi_{676}(119,\cdot) χ676(123,)\chi_{676}(123,\cdot) χ676(163,)\chi_{676}(163,\cdot) χ676(167,)\chi_{676}(167,\cdot) χ676(171,)\chi_{676}(171,\cdot) χ676(175,)\chi_{676}(175,\cdot) χ676(215,)\chi_{676}(215,\cdot) χ676(219,)\chi_{676}(219,\cdot) χ676(223,)\chi_{676}(223,\cdot) χ676(227,)\chi_{676}(227,\cdot) χ676(267,)\chi_{676}(267,\cdot) χ676(271,)\chi_{676}(271,\cdot) χ676(275,)\chi_{676}(275,\cdot) χ676(279,)\chi_{676}(279,\cdot) χ676(323,)\chi_{676}(323,\cdot) χ676(327,)\chi_{676}(327,\cdot) χ676(331,)\chi_{676}(331,\cdot) χ676(371,)\chi_{676}(371,\cdot) χ676(375,)\chi_{676}(375,\cdot) χ676(379,)\chi_{676}(379,\cdot) χ676(383,)\chi_{676}(383,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ156)\Q(\zeta_{156})
Fixed field: Number field defined by a degree 156 polynomial (not computed)

Values on generators

(339,509)(339,509)(1,e(113156))(-1,e\left(\frac{113}{156}\right))

First values

aa 1-11133557799111115151717191921212323
χ676(279,a) \chi_{ 676 }(279, a) 1111e(2578)e\left(\frac{25}{78}\right)e(2752)e\left(\frac{27}{52}\right)e(1156)e\left(\frac{1}{156}\right)e(2539)e\left(\frac{25}{39}\right)e(17156)e\left(\frac{17}{156}\right)e(131156)e\left(\frac{131}{156}\right)e(5978)e\left(\frac{59}{78}\right)e(712)e\left(\frac{7}{12}\right)e(1752)e\left(\frac{17}{52}\right)e(23)e\left(\frac{2}{3}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ676(279,a)   \chi_{ 676 }(279,a) \; at   a=\;a = e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
τa(χ676(279,))   \tau_{ a }( \chi_{ 676 }(279,·) )\; at   a=\;a = e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
J(χ676(279,),χ676(n,))   J(\chi_{ 676 }(279,·),\chi_{ 676 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
K(a,b,χ676(279,))  K(a,b,\chi_{ 676 }(279,·)) \; at   a,b=\; a,b = e.g. 1,2