Properties

Label 676.279
Modulus $676$
Conductor $676$
Order $156$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(676, base_ring=CyclotomicField(156))
 
M = H._module
 
chi = DirichletCharacter(H, M([78,113]))
 
pari: [g,chi] = znchar(Mod(279,676))
 

Basic properties

Modulus: \(676\)
Conductor: \(676\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(156\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 676.w

\(\chi_{676}(7,\cdot)\) \(\chi_{676}(11,\cdot)\) \(\chi_{676}(15,\cdot)\) \(\chi_{676}(59,\cdot)\) \(\chi_{676}(63,\cdot)\) \(\chi_{676}(67,\cdot)\) \(\chi_{676}(71,\cdot)\) \(\chi_{676}(111,\cdot)\) \(\chi_{676}(115,\cdot)\) \(\chi_{676}(119,\cdot)\) \(\chi_{676}(123,\cdot)\) \(\chi_{676}(163,\cdot)\) \(\chi_{676}(167,\cdot)\) \(\chi_{676}(171,\cdot)\) \(\chi_{676}(175,\cdot)\) \(\chi_{676}(215,\cdot)\) \(\chi_{676}(219,\cdot)\) \(\chi_{676}(223,\cdot)\) \(\chi_{676}(227,\cdot)\) \(\chi_{676}(267,\cdot)\) \(\chi_{676}(271,\cdot)\) \(\chi_{676}(275,\cdot)\) \(\chi_{676}(279,\cdot)\) \(\chi_{676}(323,\cdot)\) \(\chi_{676}(327,\cdot)\) \(\chi_{676}(331,\cdot)\) \(\chi_{676}(371,\cdot)\) \(\chi_{676}(375,\cdot)\) \(\chi_{676}(379,\cdot)\) \(\chi_{676}(383,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{156})$
Fixed field: Number field defined by a degree 156 polynomial (not computed)

Values on generators

\((339,509)\) → \((-1,e\left(\frac{113}{156}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(17\)\(19\)\(21\)\(23\)
\( \chi_{ 676 }(279, a) \) \(1\)\(1\)\(e\left(\frac{25}{78}\right)\)\(e\left(\frac{27}{52}\right)\)\(e\left(\frac{1}{156}\right)\)\(e\left(\frac{25}{39}\right)\)\(e\left(\frac{17}{156}\right)\)\(e\left(\frac{131}{156}\right)\)\(e\left(\frac{59}{78}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{17}{52}\right)\)\(e\left(\frac{2}{3}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 676 }(279,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 676 }(279,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 676 }(279,·),\chi_{ 676 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 676 }(279,·)) \;\) at \(\; a,b = \) e.g. 1,2