Properties

Label 676.155
Modulus $676$
Conductor $676$
Order $26$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(676, base_ring=CyclotomicField(26))
 
M = H._module
 
chi = DirichletCharacter(H, M([13,5]))
 
pari: [g,chi] = znchar(Mod(155,676))
 

Basic properties

Modulus: \(676\)
Conductor: \(676\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(26\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 676.p

\(\chi_{676}(51,\cdot)\) \(\chi_{676}(103,\cdot)\) \(\chi_{676}(155,\cdot)\) \(\chi_{676}(207,\cdot)\) \(\chi_{676}(259,\cdot)\) \(\chi_{676}(311,\cdot)\) \(\chi_{676}(363,\cdot)\) \(\chi_{676}(415,\cdot)\) \(\chi_{676}(467,\cdot)\) \(\chi_{676}(519,\cdot)\) \(\chi_{676}(571,\cdot)\) \(\chi_{676}(623,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{13})\)
Fixed field: 26.0.257042034665630107056690459656879750694098197206386665924329472.1

Values on generators

\((339,509)\) → \((-1,e\left(\frac{5}{26}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(17\)\(19\)\(21\)\(23\)
\( \chi_{ 676 }(155, a) \) \(-1\)\(1\)\(e\left(\frac{9}{26}\right)\)\(e\left(\frac{19}{26}\right)\)\(e\left(\frac{1}{13}\right)\)\(e\left(\frac{9}{13}\right)\)\(e\left(\frac{4}{13}\right)\)\(e\left(\frac{1}{13}\right)\)\(e\left(\frac{1}{13}\right)\)\(1\)\(e\left(\frac{11}{26}\right)\)\(-1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 676 }(155,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 676 }(155,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 676 }(155,·),\chi_{ 676 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 676 }(155,·)) \;\) at \(\; a,b = \) e.g. 1,2