sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6900, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([55,55,11,80]))
pari:[g,chi] = znchar(Mod(2579,6900))
Modulus: | 6900 | |
Conductor: | 6900 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 110 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ6900(59,⋅)
χ6900(119,⋅)
χ6900(179,⋅)
χ6900(239,⋅)
χ6900(719,⋅)
χ6900(959,⋅)
χ6900(1139,⋅)
χ6900(1319,⋅)
χ6900(1439,⋅)
χ6900(1559,⋅)
χ6900(1619,⋅)
χ6900(2279,⋅)
χ6900(2339,⋅)
χ6900(2519,⋅)
χ6900(2579,⋅)
χ6900(2819,⋅)
χ6900(2879,⋅)
χ6900(2939,⋅)
χ6900(3479,⋅)
χ6900(3659,⋅)
χ6900(3719,⋅)
χ6900(3959,⋅)
χ6900(4079,⋅)
χ6900(4259,⋅)
χ6900(4319,⋅)
χ6900(4379,⋅)
χ6900(4859,⋅)
χ6900(5039,⋅)
χ6900(5279,⋅)
χ6900(5339,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(3451,4601,277,1201) → (−1,−1,e(101),e(118))
a |
−1 | 1 | 7 | 11 | 13 | 17 | 19 | 29 | 31 | 37 | 41 | 43 |
χ6900(2579,a) |
1 | 1 | e(119) | e(558) | e(1109) | e(5549) | e(11023) | e(11087) | e(11073) | e(11019) | e(11069) | e(117) |
sage:chi.jacobi_sum(n)