Properties

Label 6900.2579
Modulus 69006900
Conductor 69006900
Order 110110
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6900, base_ring=CyclotomicField(110)) M = H._module chi = DirichletCharacter(H, M([55,55,11,80]))
 
Copy content pari:[g,chi] = znchar(Mod(2579,6900))
 

Basic properties

Modulus: 69006900
Conductor: 69006900
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 110110
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 6900.da

χ6900(59,)\chi_{6900}(59,\cdot) χ6900(119,)\chi_{6900}(119,\cdot) χ6900(179,)\chi_{6900}(179,\cdot) χ6900(239,)\chi_{6900}(239,\cdot) χ6900(719,)\chi_{6900}(719,\cdot) χ6900(959,)\chi_{6900}(959,\cdot) χ6900(1139,)\chi_{6900}(1139,\cdot) χ6900(1319,)\chi_{6900}(1319,\cdot) χ6900(1439,)\chi_{6900}(1439,\cdot) χ6900(1559,)\chi_{6900}(1559,\cdot) χ6900(1619,)\chi_{6900}(1619,\cdot) χ6900(2279,)\chi_{6900}(2279,\cdot) χ6900(2339,)\chi_{6900}(2339,\cdot) χ6900(2519,)\chi_{6900}(2519,\cdot) χ6900(2579,)\chi_{6900}(2579,\cdot) χ6900(2819,)\chi_{6900}(2819,\cdot) χ6900(2879,)\chi_{6900}(2879,\cdot) χ6900(2939,)\chi_{6900}(2939,\cdot) χ6900(3479,)\chi_{6900}(3479,\cdot) χ6900(3659,)\chi_{6900}(3659,\cdot) χ6900(3719,)\chi_{6900}(3719,\cdot) χ6900(3959,)\chi_{6900}(3959,\cdot) χ6900(4079,)\chi_{6900}(4079,\cdot) χ6900(4259,)\chi_{6900}(4259,\cdot) χ6900(4319,)\chi_{6900}(4319,\cdot) χ6900(4379,)\chi_{6900}(4379,\cdot) χ6900(4859,)\chi_{6900}(4859,\cdot) χ6900(5039,)\chi_{6900}(5039,\cdot) χ6900(5279,)\chi_{6900}(5279,\cdot) χ6900(5339,)\chi_{6900}(5339,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ55)\Q(\zeta_{55})
Fixed field: Number field defined by a degree 110 polynomial (not computed)

Values on generators

(3451,4601,277,1201)(3451,4601,277,1201)(1,1,e(110),e(811))(-1,-1,e\left(\frac{1}{10}\right),e\left(\frac{8}{11}\right))

First values

aa 1-11177111113131717191929293131373741414343
χ6900(2579,a) \chi_{ 6900 }(2579, a) 1111e(911)e\left(\frac{9}{11}\right)e(855)e\left(\frac{8}{55}\right)e(9110)e\left(\frac{9}{110}\right)e(4955)e\left(\frac{49}{55}\right)e(23110)e\left(\frac{23}{110}\right)e(87110)e\left(\frac{87}{110}\right)e(73110)e\left(\frac{73}{110}\right)e(19110)e\left(\frac{19}{110}\right)e(69110)e\left(\frac{69}{110}\right)e(711)e\left(\frac{7}{11}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ6900(2579,a)   \chi_{ 6900 }(2579,a) \; at   a=\;a = e.g. 2