Properties

Label 6900.2939
Modulus $6900$
Conductor $6900$
Order $110$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6900, base_ring=CyclotomicField(110))
 
M = H._module
 
chi = DirichletCharacter(H, M([55,55,33,60]))
 
pari: [g,chi] = znchar(Mod(2939,6900))
 

Basic properties

Modulus: \(6900\)
Conductor: \(6900\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(110\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 6900.da

\(\chi_{6900}(59,\cdot)\) \(\chi_{6900}(119,\cdot)\) \(\chi_{6900}(179,\cdot)\) \(\chi_{6900}(239,\cdot)\) \(\chi_{6900}(719,\cdot)\) \(\chi_{6900}(959,\cdot)\) \(\chi_{6900}(1139,\cdot)\) \(\chi_{6900}(1319,\cdot)\) \(\chi_{6900}(1439,\cdot)\) \(\chi_{6900}(1559,\cdot)\) \(\chi_{6900}(1619,\cdot)\) \(\chi_{6900}(2279,\cdot)\) \(\chi_{6900}(2339,\cdot)\) \(\chi_{6900}(2519,\cdot)\) \(\chi_{6900}(2579,\cdot)\) \(\chi_{6900}(2819,\cdot)\) \(\chi_{6900}(2879,\cdot)\) \(\chi_{6900}(2939,\cdot)\) \(\chi_{6900}(3479,\cdot)\) \(\chi_{6900}(3659,\cdot)\) \(\chi_{6900}(3719,\cdot)\) \(\chi_{6900}(3959,\cdot)\) \(\chi_{6900}(4079,\cdot)\) \(\chi_{6900}(4259,\cdot)\) \(\chi_{6900}(4319,\cdot)\) \(\chi_{6900}(4379,\cdot)\) \(\chi_{6900}(4859,\cdot)\) \(\chi_{6900}(5039,\cdot)\) \(\chi_{6900}(5279,\cdot)\) \(\chi_{6900}(5339,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 110 polynomial (not computed)

Values on generators

\((3451,4601,277,1201)\) → \((-1,-1,e\left(\frac{3}{10}\right),e\left(\frac{6}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 6900 }(2939, a) \) \(1\)\(1\)\(e\left(\frac{4}{11}\right)\)\(e\left(\frac{39}{55}\right)\)\(e\left(\frac{37}{110}\right)\)\(e\left(\frac{12}{55}\right)\)\(e\left(\frac{9}{110}\right)\)\(e\left(\frac{101}{110}\right)\)\(e\left(\frac{19}{110}\right)\)\(e\left(\frac{17}{110}\right)\)\(e\left(\frac{27}{110}\right)\)\(e\left(\frac{8}{11}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 6900 }(2939,a) \;\) at \(\;a = \) e.g. 2