sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(704, base_ring=CyclotomicField(80))
M = H._module
chi = DirichletCharacter(H, M([40,5,16]))
pari:[g,chi] = znchar(Mod(59,704))
Modulus: | 704 | |
Conductor: | 704 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 80 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ704(3,⋅)
χ704(27,⋅)
χ704(59,⋅)
χ704(75,⋅)
χ704(91,⋅)
χ704(115,⋅)
χ704(147,⋅)
χ704(163,⋅)
χ704(179,⋅)
χ704(203,⋅)
χ704(235,⋅)
χ704(251,⋅)
χ704(267,⋅)
χ704(291,⋅)
χ704(323,⋅)
χ704(339,⋅)
χ704(355,⋅)
χ704(379,⋅)
χ704(411,⋅)
χ704(427,⋅)
χ704(443,⋅)
χ704(467,⋅)
χ704(499,⋅)
χ704(515,⋅)
χ704(531,⋅)
χ704(555,⋅)
χ704(587,⋅)
χ704(603,⋅)
χ704(619,⋅)
χ704(643,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(639,133,321) → (−1,e(161),e(51))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 13 | 15 | 17 | 19 | 21 | 23 |
χ704(59,a) |
−1 | 1 | e(8023) | e(8069) | e(4021) | e(4023) | e(8011) | e(203) | e(2011) | e(8043) | e(1613) | e(83) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)