Properties

Label 704.59
Modulus 704704
Conductor 704704
Order 8080
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(704, base_ring=CyclotomicField(80)) M = H._module chi = DirichletCharacter(H, M([40,5,16]))
 
Copy content pari:[g,chi] = znchar(Mod(59,704))
 

Basic properties

Modulus: 704704
Conductor: 704704
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 8080
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 704.bl

χ704(3,)\chi_{704}(3,\cdot) χ704(27,)\chi_{704}(27,\cdot) χ704(59,)\chi_{704}(59,\cdot) χ704(75,)\chi_{704}(75,\cdot) χ704(91,)\chi_{704}(91,\cdot) χ704(115,)\chi_{704}(115,\cdot) χ704(147,)\chi_{704}(147,\cdot) χ704(163,)\chi_{704}(163,\cdot) χ704(179,)\chi_{704}(179,\cdot) χ704(203,)\chi_{704}(203,\cdot) χ704(235,)\chi_{704}(235,\cdot) χ704(251,)\chi_{704}(251,\cdot) χ704(267,)\chi_{704}(267,\cdot) χ704(291,)\chi_{704}(291,\cdot) χ704(323,)\chi_{704}(323,\cdot) χ704(339,)\chi_{704}(339,\cdot) χ704(355,)\chi_{704}(355,\cdot) χ704(379,)\chi_{704}(379,\cdot) χ704(411,)\chi_{704}(411,\cdot) χ704(427,)\chi_{704}(427,\cdot) χ704(443,)\chi_{704}(443,\cdot) χ704(467,)\chi_{704}(467,\cdot) χ704(499,)\chi_{704}(499,\cdot) χ704(515,)\chi_{704}(515,\cdot) χ704(531,)\chi_{704}(531,\cdot) χ704(555,)\chi_{704}(555,\cdot) χ704(587,)\chi_{704}(587,\cdot) χ704(603,)\chi_{704}(603,\cdot) χ704(619,)\chi_{704}(619,\cdot) χ704(643,)\chi_{704}(643,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ80)\Q(\zeta_{80})
Fixed field: Number field defined by a degree 80 polynomial

Values on generators

(639,133,321)(639,133,321)(1,e(116),e(15))(-1,e\left(\frac{1}{16}\right),e\left(\frac{1}{5}\right))

First values

aa 1-11133557799131315151717191921212323
χ704(59,a) \chi_{ 704 }(59, a) 1-111e(2380)e\left(\frac{23}{80}\right)e(6980)e\left(\frac{69}{80}\right)e(2140)e\left(\frac{21}{40}\right)e(2340)e\left(\frac{23}{40}\right)e(1180)e\left(\frac{11}{80}\right)e(320)e\left(\frac{3}{20}\right)e(1120)e\left(\frac{11}{20}\right)e(4380)e\left(\frac{43}{80}\right)e(1316)e\left(\frac{13}{16}\right)e(38)e\left(\frac{3}{8}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ704(59,a)   \chi_{ 704 }(59,a) \; at   a=\;a = e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
τa(χ704(59,))   \tau_{ a }( \chi_{ 704 }(59,·) )\; at   a=\;a = e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
J(χ704(59,),χ704(n,))   J(\chi_{ 704 }(59,·),\chi_{ 704 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
K(a,b,χ704(59,))  K(a,b,\chi_{ 704 }(59,·)) \; at   a,b=\; a,b = e.g. 1,2