Properties

Label 704.603
Modulus $704$
Conductor $704$
Order $80$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(704, base_ring=CyclotomicField(80))
 
M = H._module
 
chi = DirichletCharacter(H, M([40,45,48]))
 
pari: [g,chi] = znchar(Mod(603,704))
 

Basic properties

Modulus: \(704\)
Conductor: \(704\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(80\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 704.bl

\(\chi_{704}(3,\cdot)\) \(\chi_{704}(27,\cdot)\) \(\chi_{704}(59,\cdot)\) \(\chi_{704}(75,\cdot)\) \(\chi_{704}(91,\cdot)\) \(\chi_{704}(115,\cdot)\) \(\chi_{704}(147,\cdot)\) \(\chi_{704}(163,\cdot)\) \(\chi_{704}(179,\cdot)\) \(\chi_{704}(203,\cdot)\) \(\chi_{704}(235,\cdot)\) \(\chi_{704}(251,\cdot)\) \(\chi_{704}(267,\cdot)\) \(\chi_{704}(291,\cdot)\) \(\chi_{704}(323,\cdot)\) \(\chi_{704}(339,\cdot)\) \(\chi_{704}(355,\cdot)\) \(\chi_{704}(379,\cdot)\) \(\chi_{704}(411,\cdot)\) \(\chi_{704}(427,\cdot)\) \(\chi_{704}(443,\cdot)\) \(\chi_{704}(467,\cdot)\) \(\chi_{704}(499,\cdot)\) \(\chi_{704}(515,\cdot)\) \(\chi_{704}(531,\cdot)\) \(\chi_{704}(555,\cdot)\) \(\chi_{704}(587,\cdot)\) \(\chi_{704}(603,\cdot)\) \(\chi_{704}(619,\cdot)\) \(\chi_{704}(643,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{80})$
Fixed field: Number field defined by a degree 80 polynomial

Values on generators

\((639,133,321)\) → \((-1,e\left(\frac{9}{16}\right),e\left(\frac{3}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(13\)\(15\)\(17\)\(19\)\(21\)\(23\)
\( \chi_{ 704 }(603, a) \) \(-1\)\(1\)\(e\left(\frac{79}{80}\right)\)\(e\left(\frac{77}{80}\right)\)\(e\left(\frac{13}{40}\right)\)\(e\left(\frac{39}{40}\right)\)\(e\left(\frac{3}{80}\right)\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{3}{20}\right)\)\(e\left(\frac{19}{80}\right)\)\(e\left(\frac{5}{16}\right)\)\(e\left(\frac{3}{8}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 704 }(603,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 704 }(603,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 704 }(603,·),\chi_{ 704 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 704 }(603,·)) \;\) at \(\; a,b = \) e.g. 1,2