Properties

Label 729.13
Modulus 729729
Conductor 729729
Order 243243
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(486))
 
M = H._module
 
chi = DirichletCharacter(H, M([332]))
 
pari: [g,chi] = znchar(Mod(13,729))
 

Basic properties

Modulus: 729729
Conductor: 729729
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 243243
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 729.k

χ729(4,)\chi_{729}(4,\cdot) χ729(7,)\chi_{729}(7,\cdot) χ729(13,)\chi_{729}(13,\cdot) χ729(16,)\chi_{729}(16,\cdot) χ729(22,)\chi_{729}(22,\cdot) χ729(25,)\chi_{729}(25,\cdot) χ729(31,)\chi_{729}(31,\cdot) χ729(34,)\chi_{729}(34,\cdot) χ729(40,)\chi_{729}(40,\cdot) χ729(43,)\chi_{729}(43,\cdot) χ729(49,)\chi_{729}(49,\cdot) χ729(52,)\chi_{729}(52,\cdot) χ729(58,)\chi_{729}(58,\cdot) χ729(61,)\chi_{729}(61,\cdot) χ729(67,)\chi_{729}(67,\cdot) χ729(70,)\chi_{729}(70,\cdot) χ729(76,)\chi_{729}(76,\cdot) χ729(79,)\chi_{729}(79,\cdot) χ729(85,)\chi_{729}(85,\cdot) χ729(88,)\chi_{729}(88,\cdot) χ729(94,)\chi_{729}(94,\cdot) χ729(97,)\chi_{729}(97,\cdot) χ729(103,)\chi_{729}(103,\cdot) χ729(106,)\chi_{729}(106,\cdot) χ729(112,)\chi_{729}(112,\cdot) χ729(115,)\chi_{729}(115,\cdot) χ729(121,)\chi_{729}(121,\cdot) χ729(124,)\chi_{729}(124,\cdot) χ729(130,)\chi_{729}(130,\cdot) χ729(133,)\chi_{729}(133,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ243)\Q(\zeta_{243})
Fixed field: Number field defined by a degree 243 polynomial (not computed)

Values on generators

22e(166243)e\left(\frac{166}{243}\right)

First values

aa 1-111224455778810101111131314141616
χ729(13,a) \chi_{ 729 }(13, a) 1111e(166243)e\left(\frac{166}{243}\right)e(89243)e\left(\frac{89}{243}\right)e(173243)e\left(\frac{173}{243}\right)e(37243)e\left(\frac{37}{243}\right)e(481)e\left(\frac{4}{81}\right)e(3281)e\left(\frac{32}{81}\right)e(79243)e\left(\frac{79}{243}\right)e(194243)e\left(\frac{194}{243}\right)e(203243)e\left(\frac{203}{243}\right)e(178243)e\left(\frac{178}{243}\right)
sage: chi.jacobi_sum(n)
 
χ729(13,a)   \chi_{ 729 }(13,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ729(13,))   \tau_{ a }( \chi_{ 729 }(13,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ729(13,),χ729(n,))   J(\chi_{ 729 }(13,·),\chi_{ 729 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ729(13,))  K(a,b,\chi_{ 729 }(13,·)) \; at   a,b=\; a,b = e.g. 1,2