from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(729, base_ring=CyclotomicField(486))
M = H._module
chi = DirichletCharacter(H, M([332]))
pari: [g,chi] = znchar(Mod(13,729))
χ729(4,⋅)
χ729(7,⋅)
χ729(13,⋅)
χ729(16,⋅)
χ729(22,⋅)
χ729(25,⋅)
χ729(31,⋅)
χ729(34,⋅)
χ729(40,⋅)
χ729(43,⋅)
χ729(49,⋅)
χ729(52,⋅)
χ729(58,⋅)
χ729(61,⋅)
χ729(67,⋅)
χ729(70,⋅)
χ729(76,⋅)
χ729(79,⋅)
χ729(85,⋅)
χ729(88,⋅)
χ729(94,⋅)
χ729(97,⋅)
χ729(103,⋅)
χ729(106,⋅)
χ729(112,⋅)
χ729(115,⋅)
χ729(121,⋅)
χ729(124,⋅)
χ729(130,⋅)
χ729(133,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
2 → e(243166)
a |
−1 | 1 | 2 | 4 | 5 | 7 | 8 | 10 | 11 | 13 | 14 | 16 |
χ729(13,a) |
1 | 1 | e(243166) | e(24389) | e(243173) | e(24337) | e(814) | e(8132) | e(24379) | e(243194) | e(243203) | e(243178) |
pari: znchargauss(g,chi,a)
sage: chi.kloosterman_sum(a,b)