from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(729, base_ring=CyclotomicField(162))
M = H._module
chi = DirichletCharacter(H, M([43]))
pari: [g,chi] = znchar(Mod(143,729))
χ729(8,⋅)
χ729(17,⋅)
χ729(35,⋅)
χ729(44,⋅)
χ729(62,⋅)
χ729(71,⋅)
χ729(89,⋅)
χ729(98,⋅)
χ729(116,⋅)
χ729(125,⋅)
χ729(143,⋅)
χ729(152,⋅)
χ729(170,⋅)
χ729(179,⋅)
χ729(197,⋅)
χ729(206,⋅)
χ729(224,⋅)
χ729(233,⋅)
χ729(251,⋅)
χ729(260,⋅)
χ729(278,⋅)
χ729(287,⋅)
χ729(305,⋅)
χ729(314,⋅)
χ729(332,⋅)
χ729(341,⋅)
χ729(359,⋅)
χ729(368,⋅)
χ729(386,⋅)
χ729(395,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
2 → e(16243)
a |
−1 | 1 | 2 | 4 | 5 | 7 | 8 | 10 | 11 | 13 | 14 | 16 |
χ729(143,a) |
−1 | 1 | e(16243) | e(8143) | e(16217) | e(8147) | e(5443) | e(2710) | e(16219) | e(8110) | e(162137) | e(815) |
pari: znchargauss(g,chi,a)
sage: chi.kloosterman_sum(a,b)