Properties

Label 729.35
Modulus 729729
Conductor 243243
Order 162162
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(162))
 
M = H._module
 
chi = DirichletCharacter(H, M([139]))
 
pari: [g,chi] = znchar(Mod(35,729))
 

Basic properties

Modulus: 729729
Conductor: 243243
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 162162
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ243(146,)\chi_{243}(146,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 729.j

χ729(8,)\chi_{729}(8,\cdot) χ729(17,)\chi_{729}(17,\cdot) χ729(35,)\chi_{729}(35,\cdot) χ729(44,)\chi_{729}(44,\cdot) χ729(62,)\chi_{729}(62,\cdot) χ729(71,)\chi_{729}(71,\cdot) χ729(89,)\chi_{729}(89,\cdot) χ729(98,)\chi_{729}(98,\cdot) χ729(116,)\chi_{729}(116,\cdot) χ729(125,)\chi_{729}(125,\cdot) χ729(143,)\chi_{729}(143,\cdot) χ729(152,)\chi_{729}(152,\cdot) χ729(170,)\chi_{729}(170,\cdot) χ729(179,)\chi_{729}(179,\cdot) χ729(197,)\chi_{729}(197,\cdot) χ729(206,)\chi_{729}(206,\cdot) χ729(224,)\chi_{729}(224,\cdot) χ729(233,)\chi_{729}(233,\cdot) χ729(251,)\chi_{729}(251,\cdot) χ729(260,)\chi_{729}(260,\cdot) χ729(278,)\chi_{729}(278,\cdot) χ729(287,)\chi_{729}(287,\cdot) χ729(305,)\chi_{729}(305,\cdot) χ729(314,)\chi_{729}(314,\cdot) χ729(332,)\chi_{729}(332,\cdot) χ729(341,)\chi_{729}(341,\cdot) χ729(359,)\chi_{729}(359,\cdot) χ729(368,)\chi_{729}(368,\cdot) χ729(386,)\chi_{729}(386,\cdot) χ729(395,)\chi_{729}(395,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ81)\Q(\zeta_{81})
Fixed field: Number field defined by a degree 162 polynomial (not computed)

Values on generators

22e(139162)e\left(\frac{139}{162}\right)

First values

aa 1-111224455778810101111131314141616
χ729(35,a) \chi_{ 729 }(35, a) 1-111e(139162)e\left(\frac{139}{162}\right)e(5881)e\left(\frac{58}{81}\right)e(119162)e\left(\frac{119}{162}\right)e(581)e\left(\frac{5}{81}\right)e(3154)e\left(\frac{31}{54}\right)e(1627)e\left(\frac{16}{27}\right)e(133162)e\left(\frac{133}{162}\right)e(7081)e\left(\frac{70}{81}\right)e(149162)e\left(\frac{149}{162}\right)e(3581)e\left(\frac{35}{81}\right)
sage: chi.jacobi_sum(n)
 
χ729(35,a)   \chi_{ 729 }(35,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ729(35,))   \tau_{ a }( \chi_{ 729 }(35,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ729(35,),χ729(n,))   J(\chi_{ 729 }(35,·),\chi_{ 729 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ729(35,))  K(a,b,\chi_{ 729 }(35,·)) \; at   a,b=\; a,b = e.g. 1,2