from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(729, base_ring=CyclotomicField(162))
M = H._module
chi = DirichletCharacter(H, M([160]))
pari: [g,chi] = znchar(Mod(262,729))
χ729(10,⋅)
χ729(19,⋅)
χ729(37,⋅)
χ729(46,⋅)
χ729(64,⋅)
χ729(73,⋅)
χ729(91,⋅)
χ729(100,⋅)
χ729(118,⋅)
χ729(127,⋅)
χ729(145,⋅)
χ729(154,⋅)
χ729(172,⋅)
χ729(181,⋅)
χ729(199,⋅)
χ729(208,⋅)
χ729(226,⋅)
χ729(235,⋅)
χ729(253,⋅)
χ729(262,⋅)
χ729(280,⋅)
χ729(289,⋅)
χ729(307,⋅)
χ729(316,⋅)
χ729(334,⋅)
χ729(343,⋅)
χ729(361,⋅)
χ729(370,⋅)
χ729(388,⋅)
χ729(397,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
2 → e(8180)
a |
−1 | 1 | 2 | 4 | 5 | 7 | 8 | 10 | 11 | 13 | 14 | 16 |
χ729(262,a) |
1 | 1 | e(8180) | e(8179) | e(8158) | e(8111) | e(2726) | e(2719) | e(8141) | e(8173) | e(8110) | e(8177) |
pari: znchargauss(g,chi,a)
sage: chi.kloosterman_sum(a,b)