Properties

Label 729.370
Modulus 729729
Conductor 243243
Order 8181
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(162))
 
M = H._module
 
chi = DirichletCharacter(H, M([94]))
 
pari: [g,chi] = znchar(Mod(370,729))
 

Basic properties

Modulus: 729729
Conductor: 243243
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 8181
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ243(70,)\chi_{243}(70,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 729.i

χ729(10,)\chi_{729}(10,\cdot) χ729(19,)\chi_{729}(19,\cdot) χ729(37,)\chi_{729}(37,\cdot) χ729(46,)\chi_{729}(46,\cdot) χ729(64,)\chi_{729}(64,\cdot) χ729(73,)\chi_{729}(73,\cdot) χ729(91,)\chi_{729}(91,\cdot) χ729(100,)\chi_{729}(100,\cdot) χ729(118,)\chi_{729}(118,\cdot) χ729(127,)\chi_{729}(127,\cdot) χ729(145,)\chi_{729}(145,\cdot) χ729(154,)\chi_{729}(154,\cdot) χ729(172,)\chi_{729}(172,\cdot) χ729(181,)\chi_{729}(181,\cdot) χ729(199,)\chi_{729}(199,\cdot) χ729(208,)\chi_{729}(208,\cdot) χ729(226,)\chi_{729}(226,\cdot) χ729(235,)\chi_{729}(235,\cdot) χ729(253,)\chi_{729}(253,\cdot) χ729(262,)\chi_{729}(262,\cdot) χ729(280,)\chi_{729}(280,\cdot) χ729(289,)\chi_{729}(289,\cdot) χ729(307,)\chi_{729}(307,\cdot) χ729(316,)\chi_{729}(316,\cdot) χ729(334,)\chi_{729}(334,\cdot) χ729(343,)\chi_{729}(343,\cdot) χ729(361,)\chi_{729}(361,\cdot) χ729(370,)\chi_{729}(370,\cdot) χ729(388,)\chi_{729}(388,\cdot) χ729(397,)\chi_{729}(397,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ81)\Q(\zeta_{81})
Fixed field: Number field defined by a degree 81 polynomial

Values on generators

22e(4781)e\left(\frac{47}{81}\right)

First values

aa 1-111224455778810101111131314141616
χ729(370,a) \chi_{ 729 }(370, a) 1111e(4781)e\left(\frac{47}{81}\right)e(1381)e\left(\frac{13}{81}\right)e(2881)e\left(\frac{28}{81}\right)e(5081)e\left(\frac{50}{81}\right)e(2027)e\left(\frac{20}{27}\right)e(2527)e\left(\frac{25}{27}\right)e(1781)e\left(\frac{17}{81}\right)e(5281)e\left(\frac{52}{81}\right)e(1681)e\left(\frac{16}{81}\right)e(2681)e\left(\frac{26}{81}\right)
sage: chi.jacobi_sum(n)
 
χ729(370,a)   \chi_{ 729 }(370,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ729(370,))   \tau_{ a }( \chi_{ 729 }(370,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ729(370,),χ729(n,))   J(\chi_{ 729 }(370,·),\chi_{ 729 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ729(370,))  K(a,b,\chi_{ 729 }(370,·)) \; at   a,b=\; a,b = e.g. 1,2