Properties

Label 729.28
Modulus 729729
Conductor 8181
Order 2727
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
M = H._module
 
chi = DirichletCharacter(H, M([44]))
 
pari: [g,chi] = znchar(Mod(28,729))
 

Basic properties

Modulus: 729729
Conductor: 8181
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2727
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ81(67,)\chi_{81}(67,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 729.g

χ729(28,)\chi_{729}(28,\cdot) χ729(55,)\chi_{729}(55,\cdot) χ729(109,)\chi_{729}(109,\cdot) χ729(136,)\chi_{729}(136,\cdot) χ729(190,)\chi_{729}(190,\cdot) χ729(217,)\chi_{729}(217,\cdot) χ729(271,)\chi_{729}(271,\cdot) χ729(298,)\chi_{729}(298,\cdot) χ729(352,)\chi_{729}(352,\cdot) χ729(379,)\chi_{729}(379,\cdot) χ729(433,)\chi_{729}(433,\cdot) χ729(460,)\chi_{729}(460,\cdot) χ729(514,)\chi_{729}(514,\cdot) χ729(541,)\chi_{729}(541,\cdot) χ729(595,)\chi_{729}(595,\cdot) χ729(622,)\chi_{729}(622,\cdot) χ729(676,)\chi_{729}(676,\cdot) χ729(703,)\chi_{729}(703,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ27)\Q(\zeta_{27})
Fixed field: Number field defined by a degree 27 polynomial

Values on generators

22e(2227)e\left(\frac{22}{27}\right)

First values

aa 1-111224455778810101111131314141616
χ729(28,a) \chi_{ 729 }(28, a) 1111e(2227)e\left(\frac{22}{27}\right)e(1727)e\left(\frac{17}{27}\right)e(2027)e\left(\frac{20}{27}\right)e(127)e\left(\frac{1}{27}\right)e(49)e\left(\frac{4}{9}\right)e(59)e\left(\frac{5}{9}\right)e(1627)e\left(\frac{16}{27}\right)e(1427)e\left(\frac{14}{27}\right)e(2327)e\left(\frac{23}{27}\right)e(727)e\left(\frac{7}{27}\right)
sage: chi.jacobi_sum(n)
 
χ729(28,a)   \chi_{ 729 }(28,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ729(28,))   \tau_{ a }( \chi_{ 729 }(28,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ729(28,),χ729(n,))   J(\chi_{ 729 }(28,·),\chi_{ 729 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ729(28,))  K(a,b,\chi_{ 729 }(28,·)) \; at   a,b=\; a,b = e.g. 1,2