Properties

Label 729.541
Modulus $729$
Conductor $81$
Order $27$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
M = H._module
 
chi = DirichletCharacter(H, M([16]))
 
pari: [g,chi] = znchar(Mod(541,729))
 

Basic properties

Modulus: \(729\)
Conductor: \(81\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(27\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{81}(7,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 729.g

\(\chi_{729}(28,\cdot)\) \(\chi_{729}(55,\cdot)\) \(\chi_{729}(109,\cdot)\) \(\chi_{729}(136,\cdot)\) \(\chi_{729}(190,\cdot)\) \(\chi_{729}(217,\cdot)\) \(\chi_{729}(271,\cdot)\) \(\chi_{729}(298,\cdot)\) \(\chi_{729}(352,\cdot)\) \(\chi_{729}(379,\cdot)\) \(\chi_{729}(433,\cdot)\) \(\chi_{729}(460,\cdot)\) \(\chi_{729}(514,\cdot)\) \(\chi_{729}(541,\cdot)\) \(\chi_{729}(595,\cdot)\) \(\chi_{729}(622,\cdot)\) \(\chi_{729}(676,\cdot)\) \(\chi_{729}(703,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{27})\)
Fixed field: Number field defined by a degree 27 polynomial

Values on generators

\(2\) → \(e\left(\frac{8}{27}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\( \chi_{ 729 }(541, a) \) \(1\)\(1\)\(e\left(\frac{8}{27}\right)\)\(e\left(\frac{16}{27}\right)\)\(e\left(\frac{22}{27}\right)\)\(e\left(\frac{20}{27}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{23}{27}\right)\)\(e\left(\frac{10}{27}\right)\)\(e\left(\frac{1}{27}\right)\)\(e\left(\frac{5}{27}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 729 }(541,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 729 }(541,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 729 }(541,·),\chi_{ 729 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 729 }(541,·)) \;\) at \(\; a,b = \) e.g. 1,2