from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(731025, base_ring=CyclotomicField(180))
M = H._module
chi = DirichletCharacter(H, M([60,99,140]))
pari: [g,chi] = znchar(Mod(234523,731025))
χ731025(28,⋅)
χ731025(3133,⋅)
χ731025(59077,⋅)
χ731025(75142,⋅)
χ731025(104383,⋅)
χ731025(107677,⋅)
χ731025(116992,⋅)
χ731025(117748,⋅)
χ731025(120097,⋅)
χ731025(146233,⋅)
χ731025(149338,⋅)
χ731025(221347,⋅)
χ731025(234523,⋅)
χ731025(234712,⋅)
χ731025(250588,⋅)
χ731025(263197,⋅)
χ731025(263953,⋅)
χ731025(266302,⋅)
χ731025(283123,⋅)
χ731025(292438,⋅)
χ731025(351487,⋅)
χ731025(367552,⋅)
χ731025(380728,⋅)
χ731025(380917,⋅)
χ731025(400087,⋅)
χ731025(409402,⋅)
χ731025(410158,⋅)
χ731025(429328,⋅)
χ731025(441748,⋅)
χ731025(497692,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(279776,321652,129601) → (e(31),e(2011),e(97))
a |
−1 | 1 | 2 | 4 | 7 | 8 | 11 | 13 | 14 | 16 | 17 | 22 |
χ731025(234523,a) |
−1 | 1 | e(180119) | e(9029) | −i | e(6059) | e(157) | e(1801) | e(9037) | e(4529) | e(180167) | e(18023) |