Properties

Label 731025.28
Modulus 731025731025
Conductor 42754275
Order 180180
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(731025, base_ring=CyclotomicField(180))
 
M = H._module
 
chi = DirichletCharacter(H, M([60,63,80]))
 
pari: [g,chi] = znchar(Mod(28,731025))
 

Basic properties

Modulus: 731025731025
Conductor: 42754275
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 180180
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ4275(1453,)\chi_{4275}(1453,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 731025.wc

χ731025(28,)\chi_{731025}(28,\cdot) χ731025(3133,)\chi_{731025}(3133,\cdot) χ731025(59077,)\chi_{731025}(59077,\cdot) χ731025(75142,)\chi_{731025}(75142,\cdot) χ731025(104383,)\chi_{731025}(104383,\cdot) χ731025(107677,)\chi_{731025}(107677,\cdot) χ731025(116992,)\chi_{731025}(116992,\cdot) χ731025(117748,)\chi_{731025}(117748,\cdot) χ731025(120097,)\chi_{731025}(120097,\cdot) χ731025(146233,)\chi_{731025}(146233,\cdot) χ731025(149338,)\chi_{731025}(149338,\cdot) χ731025(221347,)\chi_{731025}(221347,\cdot) χ731025(234523,)\chi_{731025}(234523,\cdot) χ731025(234712,)\chi_{731025}(234712,\cdot) χ731025(250588,)\chi_{731025}(250588,\cdot) χ731025(263197,)\chi_{731025}(263197,\cdot) χ731025(263953,)\chi_{731025}(263953,\cdot) χ731025(266302,)\chi_{731025}(266302,\cdot) χ731025(283123,)\chi_{731025}(283123,\cdot) χ731025(292438,)\chi_{731025}(292438,\cdot) χ731025(351487,)\chi_{731025}(351487,\cdot) χ731025(367552,)\chi_{731025}(367552,\cdot) χ731025(380728,)\chi_{731025}(380728,\cdot) χ731025(380917,)\chi_{731025}(380917,\cdot) χ731025(400087,)\chi_{731025}(400087,\cdot) χ731025(409402,)\chi_{731025}(409402,\cdot) χ731025(410158,)\chi_{731025}(410158,\cdot) χ731025(429328,)\chi_{731025}(429328,\cdot) χ731025(441748,)\chi_{731025}(441748,\cdot) χ731025(497692,)\chi_{731025}(497692,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ180)\Q(\zeta_{180})
Fixed field: Number field defined by a degree 180 polynomial (not computed)

Values on generators

(279776,321652,129601)(279776,321652,129601)(e(13),e(720),e(49))(e\left(\frac{1}{3}\right),e\left(\frac{7}{20}\right),e\left(\frac{4}{9}\right))

First values

aa 1-11122447788111113131414161617172222
χ731025(28,a) \chi_{ 731025 }(28, a) 1-111e(23180)e\left(\frac{23}{180}\right)e(2390)e\left(\frac{23}{90}\right)i-ie(2360)e\left(\frac{23}{60}\right)e(415)e\left(\frac{4}{15}\right)e(97180)e\left(\frac{97}{180}\right)e(7990)e\left(\frac{79}{90}\right)e(2345)e\left(\frac{23}{45}\right)e(179180)e\left(\frac{179}{180}\right)e(71180)e\left(\frac{71}{180}\right)
sage: chi.jacobi_sum(n)
 
χ731025(28,a)   \chi_{ 731025 }(28,a) \; at   a=\;a = e.g. 2