Properties

Label 731025.2743
Modulus 731025731025
Conductor 146205146205
Order 20522052
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(731025, base_ring=CyclotomicField(2052))
 
M = H._module
 
chi = DirichletCharacter(H, M([1520,1539,468]))
 
pari: [g,chi] = znchar(Mod(2743,731025))
 

Basic properties

Modulus: 731025731025
Conductor: 146205146205
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 20522052
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ146205(2743,)\chi_{146205}(2743,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 731025.bpn

χ731025(7,)\chi_{731025}(7,\cdot) χ731025(2443,)\chi_{731025}(2443,\cdot) χ731025(2743,)\chi_{731025}(2743,\cdot) χ731025(3982,)\chi_{731025}(3982,\cdot) χ731025(4282,)\chi_{731025}(4282,\cdot) χ731025(6718,)\chi_{731025}(6718,\cdot) χ731025(7018,)\chi_{731025}(7018,\cdot) χ731025(8257,)\chi_{731025}(8257,\cdot) χ731025(8557,)\chi_{731025}(8557,\cdot) χ731025(10993,)\chi_{731025}(10993,\cdot) χ731025(11293,)\chi_{731025}(11293,\cdot) χ731025(12532,)\chi_{731025}(12532,\cdot) χ731025(12832,)\chi_{731025}(12832,\cdot) χ731025(15268,)\chi_{731025}(15268,\cdot) χ731025(15568,)\chi_{731025}(15568,\cdot) χ731025(16807,)\chi_{731025}(16807,\cdot) χ731025(17107,)\chi_{731025}(17107,\cdot) χ731025(19543,)\chi_{731025}(19543,\cdot) χ731025(19843,)\chi_{731025}(19843,\cdot) χ731025(21082,)\chi_{731025}(21082,\cdot) χ731025(21382,)\chi_{731025}(21382,\cdot) χ731025(23818,)\chi_{731025}(23818,\cdot) χ731025(25357,)\chi_{731025}(25357,\cdot) χ731025(25657,)\chi_{731025}(25657,\cdot) χ731025(28093,)\chi_{731025}(28093,\cdot) χ731025(28393,)\chi_{731025}(28393,\cdot) χ731025(29632,)\chi_{731025}(29632,\cdot) χ731025(29932,)\chi_{731025}(29932,\cdot) χ731025(32368,)\chi_{731025}(32368,\cdot) χ731025(32668,)\chi_{731025}(32668,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ2052)\Q(\zeta_{2052})
Fixed field: Number field defined by a degree 2052 polynomial (not computed)

Values on generators

(279776,321652,129601)(279776,321652,129601)(e(2027),i,e(1357))(e\left(\frac{20}{27}\right),-i,e\left(\frac{13}{57}\right))

First values

aa 1-11122447788111113131414161617172222
χ731025(2743,a) \chi_{ 731025 }(2743, a) 1-111e(14752052)e\left(\frac{1475}{2052}\right)e(4491026)e\left(\frac{449}{1026}\right)e(16672052)e\left(\frac{1667}{2052}\right)e(107684)e\left(\frac{107}{684}\right)e(458513)e\left(\frac{458}{513}\right)e(4332052)e\left(\frac{433}{2052}\right)e(5451026)e\left(\frac{545}{1026}\right)e(449513)e\left(\frac{449}{513}\right)e(505684)e\left(\frac{505}{684}\right)e(12552052)e\left(\frac{1255}{2052}\right)
sage: chi.jacobi_sum(n)
 
χ731025(2743,a)   \chi_{ 731025 }(2743,a) \; at   a=\;a = e.g. 2