from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(731025, base_ring=CyclotomicField(2052))
M = H._module
chi = DirichletCharacter(H, M([380,513,576]))
pari: [g,chi] = znchar(Mod(8557,731025))
χ731025(7,⋅)
χ731025(2443,⋅)
χ731025(2743,⋅)
χ731025(3982,⋅)
χ731025(4282,⋅)
χ731025(6718,⋅)
χ731025(7018,⋅)
χ731025(8257,⋅)
χ731025(8557,⋅)
χ731025(10993,⋅)
χ731025(11293,⋅)
χ731025(12532,⋅)
χ731025(12832,⋅)
χ731025(15268,⋅)
χ731025(15568,⋅)
χ731025(16807,⋅)
χ731025(17107,⋅)
χ731025(19543,⋅)
χ731025(19843,⋅)
χ731025(21082,⋅)
χ731025(21382,⋅)
χ731025(23818,⋅)
χ731025(25357,⋅)
χ731025(25657,⋅)
χ731025(28093,⋅)
χ731025(28393,⋅)
χ731025(29632,⋅)
χ731025(29932,⋅)
χ731025(32368,⋅)
χ731025(32668,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(279776,321652,129601) → (e(275),i,e(5716))
a |
−1 | 1 | 2 | 4 | 7 | 8 | 11 | 13 | 14 | 16 | 17 | 22 |
χ731025(8557,a) |
−1 | 1 | e(20521469) | e(1026443) | e(2052653) | e(684101) | e(51320) | e(20521195) | e(102635) | e(513443) | e(684547) | e(20521549) |