Properties

Label 731025.62
Modulus 731025731025
Conductor 1282512825
Order 180180
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(731025, base_ring=CyclotomicField(180))
 
M = H._module
 
chi = DirichletCharacter(H, M([70,81,160]))
 
pari: [g,chi] = znchar(Mod(62,731025))
 

Basic properties

Modulus: 731025731025
Conductor: 1282512825
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 180180
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ12825(10037,)\chi_{12825}(10037,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 731025.vw

χ731025(62,)\chi_{731025}(62,\cdot) χ731025(3122,)\chi_{731025}(3122,\cdot) χ731025(12158,)\chi_{731025}(12158,\cdot) χ731025(12302,)\chi_{731025}(12302,\cdot) χ731025(29303,)\chi_{731025}(29303,\cdot) χ731025(32363,)\chi_{731025}(32363,\cdot) χ731025(64673,)\chi_{731025}(64673,\cdot) χ731025(129122,)\chi_{731025}(129122,\cdot) χ731025(129698,)\chi_{731025}(129698,\cdot) χ731025(146267,)\chi_{731025}(146267,\cdot) χ731025(149327,)\chi_{731025}(149327,\cdot) χ731025(158363,)\chi_{731025}(158363,\cdot) χ731025(175508,)\chi_{731025}(175508,\cdot) χ731025(181637,)\chi_{731025}(181637,\cdot) χ731025(187748,)\chi_{731025}(187748,\cdot) χ731025(210878,)\chi_{731025}(210878,\cdot) χ731025(246662,)\chi_{731025}(246662,\cdot) χ731025(275327,)\chi_{731025}(275327,\cdot) χ731025(275903,)\chi_{731025}(275903,\cdot) χ731025(292472,)\chi_{731025}(292472,\cdot) χ731025(304712,)\chi_{731025}(304712,\cdot) χ731025(321713,)\chi_{731025}(321713,\cdot) χ731025(324773,)\chi_{731025}(324773,\cdot) χ731025(327842,)\chi_{731025}(327842,\cdot) χ731025(333953,)\chi_{731025}(333953,\cdot) χ731025(357083,)\chi_{731025}(357083,\cdot) χ731025(392867,)\chi_{731025}(392867,\cdot) χ731025(422108,)\chi_{731025}(422108,\cdot) χ731025(438677,)\chi_{731025}(438677,\cdot) χ731025(441737,)\chi_{731025}(441737,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ180)\Q(\zeta_{180})
Fixed field: Number field defined by a degree 180 polynomial (not computed)

Values on generators

(279776,321652,129601)(279776,321652,129601)(e(718),e(920),e(89))(e\left(\frac{7}{18}\right),e\left(\frac{9}{20}\right),e\left(\frac{8}{9}\right))

First values

aa 1-11122447788111113131414161617172222
χ731025(62,a) \chi_{ 731025 }(62, a) 1111e(131180)e\left(\frac{131}{180}\right)e(4190)e\left(\frac{41}{90}\right)e(2936)e\left(\frac{29}{36}\right)e(1160)e\left(\frac{11}{60}\right)e(8390)e\left(\frac{83}{90}\right)e(19180)e\left(\frac{19}{180}\right)e(815)e\left(\frac{8}{15}\right)e(4145)e\left(\frac{41}{45}\right)e(103180)e\left(\frac{103}{180}\right)e(1320)e\left(\frac{13}{20}\right)
sage: chi.jacobi_sum(n)
 
χ731025(62,a)   \chi_{ 731025 }(62,a) \; at   a=\;a = e.g. 2