from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(731025, base_ring=CyclotomicField(180))
M = H._module
chi = DirichletCharacter(H, M([70,81,160]))
pari: [g,chi] = znchar(Mod(62,731025))
χ731025(62,⋅)
χ731025(3122,⋅)
χ731025(12158,⋅)
χ731025(12302,⋅)
χ731025(29303,⋅)
χ731025(32363,⋅)
χ731025(64673,⋅)
χ731025(129122,⋅)
χ731025(129698,⋅)
χ731025(146267,⋅)
χ731025(149327,⋅)
χ731025(158363,⋅)
χ731025(175508,⋅)
χ731025(181637,⋅)
χ731025(187748,⋅)
χ731025(210878,⋅)
χ731025(246662,⋅)
χ731025(275327,⋅)
χ731025(275903,⋅)
χ731025(292472,⋅)
χ731025(304712,⋅)
χ731025(321713,⋅)
χ731025(324773,⋅)
χ731025(327842,⋅)
χ731025(333953,⋅)
χ731025(357083,⋅)
χ731025(392867,⋅)
χ731025(422108,⋅)
χ731025(438677,⋅)
χ731025(441737,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(279776,321652,129601) → (e(187),e(209),e(98))
a |
−1 | 1 | 2 | 4 | 7 | 8 | 11 | 13 | 14 | 16 | 17 | 22 |
χ731025(62,a) |
1 | 1 | e(180131) | e(9041) | e(3629) | e(6011) | e(9083) | e(18019) | e(158) | e(4541) | e(180103) | e(2013) |