Properties

Label 736.617
Modulus 736736
Conductor 368368
Order 4444
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(736, base_ring=CyclotomicField(44)) M = H._module chi = DirichletCharacter(H, M([0,33,30]))
 
Copy content pari:[g,chi] = znchar(Mod(617,736))
 

Basic properties

Modulus: 736736
Conductor: 368368
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 4444
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ368(157,)\chi_{368}(157,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 736.z

χ736(57,)\chi_{736}(57,\cdot) χ736(89,)\chi_{736}(89,\cdot) χ736(153,)\chi_{736}(153,\cdot) χ736(201,)\chi_{736}(201,\cdot) χ736(217,)\chi_{736}(217,\cdot) χ736(249,)\chi_{736}(249,\cdot) χ736(281,)\chi_{736}(281,\cdot) χ736(297,)\chi_{736}(297,\cdot) χ736(313,)\chi_{736}(313,\cdot) χ736(329,)\chi_{736}(329,\cdot) χ736(425,)\chi_{736}(425,\cdot) χ736(457,)\chi_{736}(457,\cdot) χ736(521,)\chi_{736}(521,\cdot) χ736(569,)\chi_{736}(569,\cdot) χ736(585,)\chi_{736}(585,\cdot) χ736(617,)\chi_{736}(617,\cdot) χ736(649,)\chi_{736}(649,\cdot) χ736(665,)\chi_{736}(665,\cdot) χ736(681,)\chi_{736}(681,\cdot) χ736(697,)\chi_{736}(697,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ44)\Q(\zeta_{44})
Fixed field: 44.0.4141890260646712580912980965306954513336276372715662057543551492310346739946349214617837764608.1

Values on generators

(415,645,97)(415,645,97)(1,i,e(1522))(1,-i,e\left(\frac{15}{22}\right))

First values

aa 1-11133557799111113131515171719192121
χ736(617,a) \chi_{ 736 }(617, a) 1-111e(744)e\left(\frac{7}{44}\right)e(1944)e\left(\frac{19}{44}\right)e(511)e\left(\frac{5}{11}\right)e(722)e\left(\frac{7}{22}\right)e(3944)e\left(\frac{39}{44}\right)e(3544)e\left(\frac{35}{44}\right)e(1322)e\left(\frac{13}{22}\right)e(1722)e\left(\frac{17}{22}\right)e(2144)e\left(\frac{21}{44}\right)e(2744)e\left(\frac{27}{44}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ736(617,a)   \chi_{ 736 }(617,a) \; at   a=\;a = e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
τa(χ736(617,))   \tau_{ a }( \chi_{ 736 }(617,·) )\; at   a=\;a = e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
J(χ736(617,),χ736(n,))   J(\chi_{ 736 }(617,·),\chi_{ 736 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
K(a,b,χ736(617,))  K(a,b,\chi_{ 736 }(617,·)) \; at   a,b=\; a,b = e.g. 1,2