Properties

Label 736.617
Modulus $736$
Conductor $368$
Order $44$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(736, base_ring=CyclotomicField(44))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,33,30]))
 
pari: [g,chi] = znchar(Mod(617,736))
 

Basic properties

Modulus: \(736\)
Conductor: \(368\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(44\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{368}(157,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 736.z

\(\chi_{736}(57,\cdot)\) \(\chi_{736}(89,\cdot)\) \(\chi_{736}(153,\cdot)\) \(\chi_{736}(201,\cdot)\) \(\chi_{736}(217,\cdot)\) \(\chi_{736}(249,\cdot)\) \(\chi_{736}(281,\cdot)\) \(\chi_{736}(297,\cdot)\) \(\chi_{736}(313,\cdot)\) \(\chi_{736}(329,\cdot)\) \(\chi_{736}(425,\cdot)\) \(\chi_{736}(457,\cdot)\) \(\chi_{736}(521,\cdot)\) \(\chi_{736}(569,\cdot)\) \(\chi_{736}(585,\cdot)\) \(\chi_{736}(617,\cdot)\) \(\chi_{736}(649,\cdot)\) \(\chi_{736}(665,\cdot)\) \(\chi_{736}(681,\cdot)\) \(\chi_{736}(697,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{44})\)
Fixed field: 44.0.4141890260646712580912980965306954513336276372715662057543551492310346739946349214617837764608.1

Values on generators

\((415,645,97)\) → \((1,-i,e\left(\frac{15}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 736 }(617, a) \) \(-1\)\(1\)\(e\left(\frac{7}{44}\right)\)\(e\left(\frac{19}{44}\right)\)\(e\left(\frac{5}{11}\right)\)\(e\left(\frac{7}{22}\right)\)\(e\left(\frac{39}{44}\right)\)\(e\left(\frac{35}{44}\right)\)\(e\left(\frac{13}{22}\right)\)\(e\left(\frac{17}{22}\right)\)\(e\left(\frac{21}{44}\right)\)\(e\left(\frac{27}{44}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 736 }(617,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 736 }(617,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 736 }(617,·),\chi_{ 736 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 736 }(617,·)) \;\) at \(\; a,b = \) e.g. 1,2