sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(736, base_ring=CyclotomicField(44))
M = H._module
chi = DirichletCharacter(H, M([0,33,30]))
pari:[g,chi] = znchar(Mod(617,736))
χ736(57,⋅)
χ736(89,⋅)
χ736(153,⋅)
χ736(201,⋅)
χ736(217,⋅)
χ736(249,⋅)
χ736(281,⋅)
χ736(297,⋅)
χ736(313,⋅)
χ736(329,⋅)
χ736(425,⋅)
χ736(457,⋅)
χ736(521,⋅)
χ736(569,⋅)
χ736(585,⋅)
χ736(617,⋅)
χ736(649,⋅)
χ736(665,⋅)
χ736(681,⋅)
χ736(697,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(415,645,97) → (1,−i,e(2215))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 |
χ736(617,a) |
−1 | 1 | e(447) | e(4419) | e(115) | e(227) | e(4439) | e(4435) | e(2213) | e(2217) | e(4421) | e(4427) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)