from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(736, base_ring=CyclotomicField(44))
M = H._module
chi = DirichletCharacter(H, M([0,11,18]))
chi.galois_orbit()
[g,chi] = znchar(Mod(57,736))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(736\) | |
Conductor: | \(368\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(44\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 368.v | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q(\zeta_{44})\) |
Fixed field: | 44.0.4141890260646712580912980965306954513336276372715662057543551492310346739946349214617837764608.1 |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{736}(57,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{13}{44}\right)\) | \(e\left(\frac{29}{44}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{41}{44}\right)\) | \(e\left(\frac{21}{44}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{39}{44}\right)\) | \(e\left(\frac{25}{44}\right)\) |
\(\chi_{736}(89,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{17}{44}\right)\) | \(e\left(\frac{21}{44}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{13}{44}\right)\) | \(e\left(\frac{41}{44}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{7}{44}\right)\) | \(e\left(\frac{9}{44}\right)\) |
\(\chi_{736}(153,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{5}{44}\right)\) | \(e\left(\frac{1}{44}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{9}{44}\right)\) | \(e\left(\frac{25}{44}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{15}{44}\right)\) | \(e\left(\frac{13}{44}\right)\) |
\(\chi_{736}(201,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{15}{44}\right)\) | \(e\left(\frac{3}{44}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{27}{44}\right)\) | \(e\left(\frac{31}{44}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{1}{44}\right)\) | \(e\left(\frac{39}{44}\right)\) |
\(\chi_{736}(217,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{41}{44}\right)\) | \(e\left(\frac{17}{44}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{21}{44}\right)\) | \(e\left(\frac{29}{44}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{35}{44}\right)\) | \(e\left(\frac{1}{44}\right)\) |
\(\chi_{736}(249,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{29}{44}\right)\) | \(e\left(\frac{41}{44}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{17}{44}\right)\) | \(e\left(\frac{13}{44}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{43}{44}\right)\) | \(e\left(\frac{5}{44}\right)\) |
\(\chi_{736}(281,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{21}{44}\right)\) | \(e\left(\frac{13}{44}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{29}{44}\right)\) | \(e\left(\frac{17}{44}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{19}{44}\right)\) | \(e\left(\frac{37}{44}\right)\) |
\(\chi_{736}(297,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{31}{44}\right)\) | \(e\left(\frac{15}{44}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{3}{44}\right)\) | \(e\left(\frac{23}{44}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{5}{44}\right)\) | \(e\left(\frac{19}{44}\right)\) |
\(\chi_{736}(313,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{1}{44}\right)\) | \(e\left(\frac{9}{44}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{37}{44}\right)\) | \(e\left(\frac{5}{44}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{3}{44}\right)\) | \(e\left(\frac{29}{44}\right)\) |
\(\chi_{736}(329,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{3}{44}\right)\) | \(e\left(\frac{27}{44}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{23}{44}\right)\) | \(e\left(\frac{15}{44}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{9}{44}\right)\) | \(e\left(\frac{43}{44}\right)\) |
\(\chi_{736}(425,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{35}{44}\right)\) | \(e\left(\frac{7}{44}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{19}{44}\right)\) | \(e\left(\frac{43}{44}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{17}{44}\right)\) | \(e\left(\frac{3}{44}\right)\) |
\(\chi_{736}(457,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{39}{44}\right)\) | \(e\left(\frac{43}{44}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{35}{44}\right)\) | \(e\left(\frac{19}{44}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{29}{44}\right)\) | \(e\left(\frac{31}{44}\right)\) |
\(\chi_{736}(521,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{27}{44}\right)\) | \(e\left(\frac{23}{44}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{31}{44}\right)\) | \(e\left(\frac{3}{44}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{37}{44}\right)\) | \(e\left(\frac{35}{44}\right)\) |
\(\chi_{736}(569,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{37}{44}\right)\) | \(e\left(\frac{25}{44}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{5}{44}\right)\) | \(e\left(\frac{9}{44}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{23}{44}\right)\) | \(e\left(\frac{17}{44}\right)\) |
\(\chi_{736}(585,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{19}{44}\right)\) | \(e\left(\frac{39}{44}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{43}{44}\right)\) | \(e\left(\frac{7}{44}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{13}{44}\right)\) | \(e\left(\frac{23}{44}\right)\) |
\(\chi_{736}(617,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{7}{44}\right)\) | \(e\left(\frac{19}{44}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{39}{44}\right)\) | \(e\left(\frac{35}{44}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{21}{44}\right)\) | \(e\left(\frac{27}{44}\right)\) |
\(\chi_{736}(649,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{43}{44}\right)\) | \(e\left(\frac{35}{44}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{7}{44}\right)\) | \(e\left(\frac{39}{44}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{41}{44}\right)\) | \(e\left(\frac{15}{44}\right)\) |
\(\chi_{736}(665,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{9}{44}\right)\) | \(e\left(\frac{37}{44}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{25}{44}\right)\) | \(e\left(\frac{1}{44}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{27}{44}\right)\) | \(e\left(\frac{41}{44}\right)\) |
\(\chi_{736}(681,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{23}{44}\right)\) | \(e\left(\frac{31}{44}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{15}{44}\right)\) | \(e\left(\frac{27}{44}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{25}{44}\right)\) | \(e\left(\frac{7}{44}\right)\) |
\(\chi_{736}(697,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{25}{44}\right)\) | \(e\left(\frac{5}{44}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{1}{44}\right)\) | \(e\left(\frac{37}{44}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{31}{44}\right)\) | \(e\left(\frac{21}{44}\right)\) |