Properties

Label 736.z
Modulus $736$
Conductor $368$
Order $44$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(736, base_ring=CyclotomicField(44))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,11,18]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(57,736))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(736\)
Conductor: \(368\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(44\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 368.v
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{44})\)
Fixed field: 44.0.4141890260646712580912980965306954513336276372715662057543551492310346739946349214617837764608.1

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(13\) \(15\) \(17\) \(19\) \(21\)
\(\chi_{736}(57,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{25}{44}\right)\)
\(\chi_{736}(89,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{9}{44}\right)\)
\(\chi_{736}(153,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{13}{44}\right)\)
\(\chi_{736}(201,\cdot)\) \(-1\) \(1\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{39}{44}\right)\)
\(\chi_{736}(217,\cdot)\) \(-1\) \(1\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{1}{44}\right)\)
\(\chi_{736}(249,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{5}{44}\right)\)
\(\chi_{736}(281,\cdot)\) \(-1\) \(1\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{37}{44}\right)\)
\(\chi_{736}(297,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{19}{44}\right)\)
\(\chi_{736}(313,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{29}{44}\right)\)
\(\chi_{736}(329,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{43}{44}\right)\)
\(\chi_{736}(425,\cdot)\) \(-1\) \(1\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{3}{44}\right)\)
\(\chi_{736}(457,\cdot)\) \(-1\) \(1\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{31}{44}\right)\)
\(\chi_{736}(521,\cdot)\) \(-1\) \(1\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{35}{44}\right)\)
\(\chi_{736}(569,\cdot)\) \(-1\) \(1\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{17}{44}\right)\)
\(\chi_{736}(585,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{23}{44}\right)\)
\(\chi_{736}(617,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{27}{44}\right)\)
\(\chi_{736}(649,\cdot)\) \(-1\) \(1\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{15}{44}\right)\)
\(\chi_{736}(665,\cdot)\) \(-1\) \(1\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{41}{44}\right)\)
\(\chi_{736}(681,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{7}{44}\right)\)
\(\chi_{736}(697,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{21}{44}\right)\)