Properties

Label 7448.2267
Modulus $7448$
Conductor $7448$
Order $126$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7448, base_ring=CyclotomicField(126))
 
M = H._module
 
chi = DirichletCharacter(H, M([63,63,99,98]))
 
pari: [g,chi] = znchar(Mod(2267,7448))
 

Basic properties

Modulus: \(7448\)
Conductor: \(7448\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(126\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 7448.jd

\(\chi_{7448}(139,\cdot)\) \(\chi_{7448}(251,\cdot)\) \(\chi_{7448}(643,\cdot)\) \(\chi_{7448}(1035,\cdot)\) \(\chi_{7448}(1203,\cdot)\) \(\chi_{7448}(1259,\cdot)\) \(\chi_{7448}(1315,\cdot)\) \(\chi_{7448}(1651,\cdot)\) \(\chi_{7448}(1707,\cdot)\) \(\chi_{7448}(2099,\cdot)\) \(\chi_{7448}(2267,\cdot)\) \(\chi_{7448}(2323,\cdot)\) \(\chi_{7448}(2379,\cdot)\) \(\chi_{7448}(2715,\cdot)\) \(\chi_{7448}(2771,\cdot)\) \(\chi_{7448}(3163,\cdot)\) \(\chi_{7448}(3387,\cdot)\) \(\chi_{7448}(3443,\cdot)\) \(\chi_{7448}(3779,\cdot)\) \(\chi_{7448}(3835,\cdot)\) \(\chi_{7448}(4227,\cdot)\) \(\chi_{7448}(4395,\cdot)\) \(\chi_{7448}(4451,\cdot)\) \(\chi_{7448}(4843,\cdot)\) \(\chi_{7448}(5459,\cdot)\) \(\chi_{7448}(5515,\cdot)\) \(\chi_{7448}(5571,\cdot)\) \(\chi_{7448}(5907,\cdot)\) \(\chi_{7448}(5963,\cdot)\) \(\chi_{7448}(6355,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 126 polynomial (not computed)

Values on generators

\((1863,3725,3041,3137)\) → \((-1,-1,e\left(\frac{11}{14}\right),e\left(\frac{7}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(23\)\(25\)\(27\)
\( \chi_{ 7448 }(2267, a) \) \(1\)\(1\)\(e\left(\frac{113}{126}\right)\)\(e\left(\frac{46}{63}\right)\)\(e\left(\frac{50}{63}\right)\)\(e\left(\frac{16}{21}\right)\)\(e\left(\frac{20}{63}\right)\)\(e\left(\frac{79}{126}\right)\)\(e\left(\frac{53}{126}\right)\)\(e\left(\frac{115}{126}\right)\)\(e\left(\frac{29}{63}\right)\)\(e\left(\frac{29}{42}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 7448 }(2267,a) \;\) at \(\;a = \) e.g. 2