Properties

Label 7448.5963
Modulus 74487448
Conductor 74487448
Order 126126
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7448, base_ring=CyclotomicField(126))
 
M = H._module
 
chi = DirichletCharacter(H, M([63,63,27,28]))
 
pari: [g,chi] = znchar(Mod(5963,7448))
 

Basic properties

Modulus: 74487448
Conductor: 74487448
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 126126
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 7448.jd

χ7448(139,)\chi_{7448}(139,\cdot) χ7448(251,)\chi_{7448}(251,\cdot) χ7448(643,)\chi_{7448}(643,\cdot) χ7448(1035,)\chi_{7448}(1035,\cdot) χ7448(1203,)\chi_{7448}(1203,\cdot) χ7448(1259,)\chi_{7448}(1259,\cdot) χ7448(1315,)\chi_{7448}(1315,\cdot) χ7448(1651,)\chi_{7448}(1651,\cdot) χ7448(1707,)\chi_{7448}(1707,\cdot) χ7448(2099,)\chi_{7448}(2099,\cdot) χ7448(2267,)\chi_{7448}(2267,\cdot) χ7448(2323,)\chi_{7448}(2323,\cdot) χ7448(2379,)\chi_{7448}(2379,\cdot) χ7448(2715,)\chi_{7448}(2715,\cdot) χ7448(2771,)\chi_{7448}(2771,\cdot) χ7448(3163,)\chi_{7448}(3163,\cdot) χ7448(3387,)\chi_{7448}(3387,\cdot) χ7448(3443,)\chi_{7448}(3443,\cdot) χ7448(3779,)\chi_{7448}(3779,\cdot) χ7448(3835,)\chi_{7448}(3835,\cdot) χ7448(4227,)\chi_{7448}(4227,\cdot) χ7448(4395,)\chi_{7448}(4395,\cdot) χ7448(4451,)\chi_{7448}(4451,\cdot) χ7448(4843,)\chi_{7448}(4843,\cdot) χ7448(5459,)\chi_{7448}(5459,\cdot) χ7448(5515,)\chi_{7448}(5515,\cdot) χ7448(5571,)\chi_{7448}(5571,\cdot) χ7448(5907,)\chi_{7448}(5907,\cdot) χ7448(5963,)\chi_{7448}(5963,\cdot) χ7448(6355,)\chi_{7448}(6355,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ63)\Q(\zeta_{63})
Fixed field: Number field defined by a degree 126 polynomial (not computed)

Values on generators

(1863,3725,3041,3137)(1863,3725,3041,3137)(1,1,e(314),e(29))(-1,-1,e\left(\frac{3}{14}\right),e\left(\frac{2}{9}\right))

First values

aa 1-1113355991111131315151717232325252727
χ7448(5963,a) \chi_{ 7448 }(5963, a) 1111e(13126)e\left(\frac{13}{126}\right)e(1763)e\left(\frac{17}{63}\right)e(1363)e\left(\frac{13}{63}\right)e(521)e\left(\frac{5}{21}\right)e(4363)e\left(\frac{43}{63}\right)e(47126)e\left(\frac{47}{126}\right)e(73126)e\left(\frac{73}{126}\right)e(11126)e\left(\frac{11}{126}\right)e(3463)e\left(\frac{34}{63}\right)e(1342)e\left(\frac{13}{42}\right)
sage: chi.jacobi_sum(n)
 
χ7448(5963,a)   \chi_{ 7448 }(5963,a) \; at   a=\;a = e.g. 2