from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7448, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([63,63,27,28]))
pari: [g,chi] = znchar(Mod(5963,7448))
χ7448(139,⋅)
χ7448(251,⋅)
χ7448(643,⋅)
χ7448(1035,⋅)
χ7448(1203,⋅)
χ7448(1259,⋅)
χ7448(1315,⋅)
χ7448(1651,⋅)
χ7448(1707,⋅)
χ7448(2099,⋅)
χ7448(2267,⋅)
χ7448(2323,⋅)
χ7448(2379,⋅)
χ7448(2715,⋅)
χ7448(2771,⋅)
χ7448(3163,⋅)
χ7448(3387,⋅)
χ7448(3443,⋅)
χ7448(3779,⋅)
χ7448(3835,⋅)
χ7448(4227,⋅)
χ7448(4395,⋅)
χ7448(4451,⋅)
χ7448(4843,⋅)
χ7448(5459,⋅)
χ7448(5515,⋅)
χ7448(5571,⋅)
χ7448(5907,⋅)
χ7448(5963,⋅)
χ7448(6355,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1863,3725,3041,3137) → (−1,−1,e(143),e(92))
a |
−1 | 1 | 3 | 5 | 9 | 11 | 13 | 15 | 17 | 23 | 25 | 27 |
χ7448(5963,a) |
1 | 1 | e(12613) | e(6317) | e(6313) | e(215) | e(6343) | e(12647) | e(12673) | e(12611) | e(6334) | e(4213) |