Properties

Label 7448.5497
Modulus $7448$
Conductor $931$
Order $63$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7448, base_ring=CyclotomicField(126))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,6,98]))
 
pari: [g,chi] = znchar(Mod(5497,7448))
 

Basic properties

Modulus: \(7448\)
Conductor: \(931\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(63\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{931}(842,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 7448.ic

\(\chi_{7448}(9,\cdot)\) \(\chi_{7448}(81,\cdot)\) \(\chi_{7448}(289,\cdot)\) \(\chi_{7448}(473,\cdot)\) \(\chi_{7448}(529,\cdot)\) \(\chi_{7448}(1073,\cdot)\) \(\chi_{7448}(1241,\cdot)\) \(\chi_{7448}(1593,\cdot)\) \(\chi_{7448}(2209,\cdot)\) \(\chi_{7448}(2305,\cdot)\) \(\chi_{7448}(2417,\cdot)\) \(\chi_{7448}(2601,\cdot)\) \(\chi_{7448}(2657,\cdot)\) \(\chi_{7448}(3201,\cdot)\) \(\chi_{7448}(3273,\cdot)\) \(\chi_{7448}(3369,\cdot)\) \(\chi_{7448}(3481,\cdot)\) \(\chi_{7448}(3665,\cdot)\) \(\chi_{7448}(3721,\cdot)\) \(\chi_{7448}(4265,\cdot)\) \(\chi_{7448}(4337,\cdot)\) \(\chi_{7448}(4433,\cdot)\) \(\chi_{7448}(4545,\cdot)\) \(\chi_{7448}(4729,\cdot)\) \(\chi_{7448}(4785,\cdot)\) \(\chi_{7448}(5329,\cdot)\) \(\chi_{7448}(5401,\cdot)\) \(\chi_{7448}(5497,\cdot)\) \(\chi_{7448}(5609,\cdot)\) \(\chi_{7448}(5793,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 63 polynomial

Values on generators

\((1863,3725,3041,3137)\) → \((1,1,e\left(\frac{1}{21}\right),e\left(\frac{7}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(23\)\(25\)\(27\)
\( \chi_{ 7448 }(5497, a) \) \(1\)\(1\)\(e\left(\frac{10}{63}\right)\)\(e\left(\frac{52}{63}\right)\)\(e\left(\frac{20}{63}\right)\)\(e\left(\frac{5}{21}\right)\)\(e\left(\frac{29}{63}\right)\)\(e\left(\frac{62}{63}\right)\)\(e\left(\frac{61}{63}\right)\)\(e\left(\frac{23}{63}\right)\)\(e\left(\frac{41}{63}\right)\)\(e\left(\frac{10}{21}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 7448 }(5497,a) \;\) at \(\;a = \) e.g. 2