Properties

Label 7488.5147
Modulus $7488$
Conductor $2496$
Order $16$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7488, base_ring=CyclotomicField(16))
 
M = H._module
 
chi = DirichletCharacter(H, M([8,9,8,8]))
 
pari: [g,chi] = znchar(Mod(5147,7488))
 

Basic properties

Modulus: \(7488\)
Conductor: \(2496\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(16\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2496}(155,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 7488.ij

\(\chi_{7488}(467,\cdot)\) \(\chi_{7488}(1403,\cdot)\) \(\chi_{7488}(2339,\cdot)\) \(\chi_{7488}(3275,\cdot)\) \(\chi_{7488}(4211,\cdot)\) \(\chi_{7488}(5147,\cdot)\) \(\chi_{7488}(6083,\cdot)\) \(\chi_{7488}(7019,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.16.3235091090906039146864124182111715328.1

Values on generators

\((703,6085,5825,5761)\) → \((-1,e\left(\frac{9}{16}\right),-1,-1)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 7488 }(5147, a) \) \(1\)\(1\)\(e\left(\frac{9}{16}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{5}{16}\right)\)\(i\)\(e\left(\frac{15}{16}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{11}{16}\right)\)\(-1\)\(e\left(\frac{3}{16}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 7488 }(5147,a) \;\) at \(\;a = \) e.g. 2