Properties

Label 7488.ij
Modulus $7488$
Conductor $2496$
Order $16$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7488, base_ring=CyclotomicField(16))
 
M = H._module
 
chi = DirichletCharacter(H, M([8,7,8,8]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(467,7488))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(7488\)
Conductor: \(2496\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(16\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 2496.dt
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.16.3235091090906039146864124182111715328.1

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(35\)
\(\chi_{7488}(467,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{11}{16}\right)\) \(-i\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{5}{16}\right)\) \(-1\) \(e\left(\frac{13}{16}\right)\)
\(\chi_{7488}(1403,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{13}{16}\right)\) \(i\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{16}\right)\) \(-1\) \(e\left(\frac{11}{16}\right)\)
\(\chi_{7488}(2339,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{15}{16}\right)\) \(-i\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{16}\right)\) \(-1\) \(e\left(\frac{9}{16}\right)\)
\(\chi_{7488}(3275,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{1}{16}\right)\) \(i\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{15}{16}\right)\) \(-1\) \(e\left(\frac{7}{16}\right)\)
\(\chi_{7488}(4211,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{3}{16}\right)\) \(-i\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{13}{16}\right)\) \(-1\) \(e\left(\frac{5}{16}\right)\)
\(\chi_{7488}(5147,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{5}{16}\right)\) \(i\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{11}{16}\right)\) \(-1\) \(e\left(\frac{3}{16}\right)\)
\(\chi_{7488}(6083,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{7}{16}\right)\) \(-i\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{9}{16}\right)\) \(-1\) \(e\left(\frac{1}{16}\right)\)
\(\chi_{7488}(7019,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{9}{16}\right)\) \(i\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{7}{16}\right)\) \(-1\) \(e\left(\frac{15}{16}\right)\)