Properties

Label 759.301
Modulus $759$
Conductor $253$
Order $55$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(759, base_ring=CyclotomicField(110))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,22,10]))
 
pari: [g,chi] = znchar(Mod(301,759))
 

Basic properties

Modulus: \(759\)
Conductor: \(253\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(55\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{253}(48,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 759.y

\(\chi_{759}(4,\cdot)\) \(\chi_{759}(16,\cdot)\) \(\chi_{759}(25,\cdot)\) \(\chi_{759}(31,\cdot)\) \(\chi_{759}(49,\cdot)\) \(\chi_{759}(58,\cdot)\) \(\chi_{759}(64,\cdot)\) \(\chi_{759}(82,\cdot)\) \(\chi_{759}(124,\cdot)\) \(\chi_{759}(163,\cdot)\) \(\chi_{759}(169,\cdot)\) \(\chi_{759}(190,\cdot)\) \(\chi_{759}(196,\cdot)\) \(\chi_{759}(202,\cdot)\) \(\chi_{759}(223,\cdot)\) \(\chi_{759}(256,\cdot)\) \(\chi_{759}(262,\cdot)\) \(\chi_{759}(280,\cdot)\) \(\chi_{759}(289,\cdot)\) \(\chi_{759}(301,\cdot)\) \(\chi_{759}(328,\cdot)\) \(\chi_{759}(334,\cdot)\) \(\chi_{759}(361,\cdot)\) \(\chi_{759}(394,\cdot)\) \(\chi_{759}(400,\cdot)\) \(\chi_{759}(427,\cdot)\) \(\chi_{759}(445,\cdot)\) \(\chi_{759}(466,\cdot)\) \(\chi_{759}(478,\cdot)\) \(\chi_{759}(487,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 55 polynomial

Values on generators

\((254,277,166)\) → \((1,e\left(\frac{1}{5}\right),e\left(\frac{1}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(13\)\(14\)\(16\)\(17\)
\( \chi_{ 759 }(301, a) \) \(1\)\(1\)\(e\left(\frac{21}{55}\right)\)\(e\left(\frac{42}{55}\right)\)\(e\left(\frac{49}{55}\right)\)\(e\left(\frac{7}{55}\right)\)\(e\left(\frac{8}{55}\right)\)\(e\left(\frac{3}{11}\right)\)\(e\left(\frac{26}{55}\right)\)\(e\left(\frac{28}{55}\right)\)\(e\left(\frac{29}{55}\right)\)\(e\left(\frac{24}{55}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 759 }(301,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 759 }(301,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 759 }(301,·),\chi_{ 759 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 759 }(301,·)) \;\) at \(\; a,b = \) e.g. 1,2