Properties

Label 759.58
Modulus 759759
Conductor 253253
Order 5555
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(759, base_ring=CyclotomicField(110)) M = H._module chi = DirichletCharacter(H, M([0,88,100]))
 
Copy content pari:[g,chi] = znchar(Mod(58,759))
 

Basic properties

Modulus: 759759
Conductor: 253253
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 5555
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ253(58,)\chi_{253}(58,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 759.y

χ759(4,)\chi_{759}(4,\cdot) χ759(16,)\chi_{759}(16,\cdot) χ759(25,)\chi_{759}(25,\cdot) χ759(31,)\chi_{759}(31,\cdot) χ759(49,)\chi_{759}(49,\cdot) χ759(58,)\chi_{759}(58,\cdot) χ759(64,)\chi_{759}(64,\cdot) χ759(82,)\chi_{759}(82,\cdot) χ759(124,)\chi_{759}(124,\cdot) χ759(163,)\chi_{759}(163,\cdot) χ759(169,)\chi_{759}(169,\cdot) χ759(190,)\chi_{759}(190,\cdot) χ759(196,)\chi_{759}(196,\cdot) χ759(202,)\chi_{759}(202,\cdot) χ759(223,)\chi_{759}(223,\cdot) χ759(256,)\chi_{759}(256,\cdot) χ759(262,)\chi_{759}(262,\cdot) χ759(280,)\chi_{759}(280,\cdot) χ759(289,)\chi_{759}(289,\cdot) χ759(301,)\chi_{759}(301,\cdot) χ759(328,)\chi_{759}(328,\cdot) χ759(334,)\chi_{759}(334,\cdot) χ759(361,)\chi_{759}(361,\cdot) χ759(394,)\chi_{759}(394,\cdot) χ759(400,)\chi_{759}(400,\cdot) χ759(427,)\chi_{759}(427,\cdot) χ759(445,)\chi_{759}(445,\cdot) χ759(466,)\chi_{759}(466,\cdot) χ759(478,)\chi_{759}(478,\cdot) χ759(487,)\chi_{759}(487,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ55)\Q(\zeta_{55})
Fixed field: Number field defined by a degree 55 polynomial

Values on generators

(254,277,166)(254,277,166)(1,e(45),e(1011))(1,e\left(\frac{4}{5}\right),e\left(\frac{10}{11}\right))

First values

aa 1-111224455778810101313141416161717
χ759(58,a) \chi_{ 759 }(58, a) 1111e(3455)e\left(\frac{34}{55}\right)e(1355)e\left(\frac{13}{55}\right)e(655)e\left(\frac{6}{55}\right)e(4855)e\left(\frac{48}{55}\right)e(4755)e\left(\frac{47}{55}\right)e(811)e\left(\frac{8}{11}\right)e(2955)e\left(\frac{29}{55}\right)e(2755)e\left(\frac{27}{55}\right)e(2655)e\left(\frac{26}{55}\right)e(3155)e\left(\frac{31}{55}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ759(58,a)   \chi_{ 759 }(58,a) \; at   a=\;a = e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
τa(χ759(58,))   \tau_{ a }( \chi_{ 759 }(58,·) )\; at   a=\;a = e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
J(χ759(58,),χ759(n,))   J(\chi_{ 759 }(58,·),\chi_{ 759 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
K(a,b,χ759(58,))  K(a,b,\chi_{ 759 }(58,·)) \; at   a,b=\; a,b = e.g. 1,2