sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(759, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([0,88,100]))
pari:[g,chi] = znchar(Mod(58,759))
χ759(4,⋅)
χ759(16,⋅)
χ759(25,⋅)
χ759(31,⋅)
χ759(49,⋅)
χ759(58,⋅)
χ759(64,⋅)
χ759(82,⋅)
χ759(124,⋅)
χ759(163,⋅)
χ759(169,⋅)
χ759(190,⋅)
χ759(196,⋅)
χ759(202,⋅)
χ759(223,⋅)
χ759(256,⋅)
χ759(262,⋅)
χ759(280,⋅)
χ759(289,⋅)
χ759(301,⋅)
χ759(328,⋅)
χ759(334,⋅)
χ759(361,⋅)
χ759(394,⋅)
χ759(400,⋅)
χ759(427,⋅)
χ759(445,⋅)
χ759(466,⋅)
χ759(478,⋅)
χ759(487,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(254,277,166) → (1,e(54),e(1110))
a |
−1 | 1 | 2 | 4 | 5 | 7 | 8 | 10 | 13 | 14 | 16 | 17 |
χ759(58,a) |
1 | 1 | e(5534) | e(5513) | e(556) | e(5548) | e(5547) | e(118) | e(5529) | e(5527) | e(5526) | e(5531) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)