Properties

Label 759.364
Modulus $759$
Conductor $23$
Order $22$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(759, base_ring=CyclotomicField(22))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,15]))
 
pari: [g,chi] = znchar(Mod(364,759))
 

Basic properties

Modulus: \(759\)
Conductor: \(23\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(22\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{23}(19,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 759.s

\(\chi_{759}(34,\cdot)\) \(\chi_{759}(67,\cdot)\) \(\chi_{759}(166,\cdot)\) \(\chi_{759}(199,\cdot)\) \(\chi_{759}(364,\cdot)\) \(\chi_{759}(562,\cdot)\) \(\chi_{759}(595,\cdot)\) \(\chi_{759}(628,\cdot)\) \(\chi_{759}(661,\cdot)\) \(\chi_{759}(727,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: Number field defined by a degree 22 polynomial

Values on generators

\((254,277,166)\) → \((1,1,e\left(\frac{15}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(13\)\(14\)\(16\)\(17\)
\( \chi_{ 759 }(364, a) \) \(-1\)\(1\)\(e\left(\frac{4}{11}\right)\)\(e\left(\frac{8}{11}\right)\)\(e\left(\frac{15}{22}\right)\)\(e\left(\frac{21}{22}\right)\)\(e\left(\frac{1}{11}\right)\)\(e\left(\frac{1}{22}\right)\)\(e\left(\frac{6}{11}\right)\)\(e\left(\frac{7}{22}\right)\)\(e\left(\frac{5}{11}\right)\)\(e\left(\frac{17}{22}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 759 }(364,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 759 }(364,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 759 }(364,·),\chi_{ 759 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 759 }(364,·)) \;\) at \(\; a,b = \) e.g. 1,2