from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(759, base_ring=CyclotomicField(22))
M = H._module
chi = DirichletCharacter(H, M([0,0,9]))
chi.galois_orbit()
[g,chi] = znchar(Mod(34,759))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(759\) | |
Conductor: | \(23\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(22\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 23.d | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q(\zeta_{11})\) |
Fixed field: | Number field defined by a degree 22 polynomial |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(13\) | \(14\) | \(16\) | \(17\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{759}(34,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{19}{22}\right)\) |
\(\chi_{759}(67,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{3}{22}\right)\) |
\(\chi_{759}(166,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{7}{22}\right)\) |
\(\chi_{759}(199,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{9}{22}\right)\) |
\(\chi_{759}(364,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{17}{22}\right)\) |
\(\chi_{759}(562,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{21}{22}\right)\) |
\(\chi_{759}(595,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{13}{22}\right)\) |
\(\chi_{759}(628,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{1}{22}\right)\) |
\(\chi_{759}(661,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{5}{22}\right)\) |
\(\chi_{759}(727,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{15}{22}\right)\) |