Properties

Label 759.458
Modulus 759759
Conductor 759759
Order 110110
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(759, base_ring=CyclotomicField(110)) M = H._module chi = DirichletCharacter(H, M([55,77,65]))
 
Copy content pari:[g,chi] = znchar(Mod(458,759))
 

Basic properties

Modulus: 759759
Conductor: 759759
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 110110
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 759.bf

χ759(17,)\chi_{759}(17,\cdot) χ759(74,)\chi_{759}(74,\cdot) χ759(83,)\chi_{759}(83,\cdot) χ759(107,)\chi_{759}(107,\cdot) χ759(134,)\chi_{759}(134,\cdot) χ759(149,)\chi_{759}(149,\cdot) χ759(182,)\chi_{759}(182,\cdot) χ759(194,)\chi_{759}(194,\cdot) χ759(227,)\chi_{759}(227,\cdot) χ759(260,)\chi_{759}(260,\cdot) χ759(272,)\chi_{759}(272,\cdot) χ759(281,)\chi_{759}(281,\cdot) χ759(293,)\chi_{759}(293,\cdot) χ759(314,)\chi_{759}(314,\cdot) χ759(332,)\chi_{759}(332,\cdot) χ759(359,)\chi_{759}(359,\cdot) χ759(365,)\chi_{759}(365,\cdot) χ759(398,)\chi_{759}(398,\cdot) χ759(425,)\chi_{759}(425,\cdot) χ759(431,)\chi_{759}(431,\cdot) χ759(458,)\chi_{759}(458,\cdot) χ759(470,)\chi_{759}(470,\cdot) χ759(479,)\chi_{759}(479,\cdot) χ759(497,)\chi_{759}(497,\cdot) χ759(503,)\chi_{759}(503,\cdot) χ759(536,)\chi_{759}(536,\cdot) χ759(557,)\chi_{759}(557,\cdot) χ759(563,)\chi_{759}(563,\cdot) χ759(569,)\chi_{759}(569,\cdot) χ759(590,)\chi_{759}(590,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ55)\Q(\zeta_{55})
Fixed field: Number field defined by a degree 110 polynomial (not computed)

Values on generators

(254,277,166)(254,277,166)(1,e(710),e(1322))(-1,e\left(\frac{7}{10}\right),e\left(\frac{13}{22}\right))

First values

aa 1-111224455778810101313141416161717
χ759(458,a) \chi_{ 759 }(458, a) 1-111e(2155)e\left(\frac{21}{55}\right)e(4255)e\left(\frac{42}{55}\right)e(4955)e\left(\frac{49}{55}\right)e(755)e\left(\frac{7}{55}\right)e(855)e\left(\frac{8}{55}\right)e(311)e\left(\frac{3}{11}\right)e(107110)e\left(\frac{107}{110}\right)e(2855)e\left(\frac{28}{55}\right)e(2955)e\left(\frac{29}{55}\right)e(103110)e\left(\frac{103}{110}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ759(458,a)   \chi_{ 759 }(458,a) \; at   a=\;a = e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
τa(χ759(458,))   \tau_{ a }( \chi_{ 759 }(458,·) )\; at   a=\;a = e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
J(χ759(458,),χ759(n,))   J(\chi_{ 759 }(458,·),\chi_{ 759 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
K(a,b,χ759(458,))  K(a,b,\chi_{ 759 }(458,·)) \; at   a,b=\; a,b = e.g. 1,2