Properties

Label 759.458
Modulus $759$
Conductor $759$
Order $110$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(759, base_ring=CyclotomicField(110))
 
M = H._module
 
chi = DirichletCharacter(H, M([55,77,65]))
 
pari: [g,chi] = znchar(Mod(458,759))
 

Basic properties

Modulus: \(759\)
Conductor: \(759\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(110\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 759.bf

\(\chi_{759}(17,\cdot)\) \(\chi_{759}(74,\cdot)\) \(\chi_{759}(83,\cdot)\) \(\chi_{759}(107,\cdot)\) \(\chi_{759}(134,\cdot)\) \(\chi_{759}(149,\cdot)\) \(\chi_{759}(182,\cdot)\) \(\chi_{759}(194,\cdot)\) \(\chi_{759}(227,\cdot)\) \(\chi_{759}(260,\cdot)\) \(\chi_{759}(272,\cdot)\) \(\chi_{759}(281,\cdot)\) \(\chi_{759}(293,\cdot)\) \(\chi_{759}(314,\cdot)\) \(\chi_{759}(332,\cdot)\) \(\chi_{759}(359,\cdot)\) \(\chi_{759}(365,\cdot)\) \(\chi_{759}(398,\cdot)\) \(\chi_{759}(425,\cdot)\) \(\chi_{759}(431,\cdot)\) \(\chi_{759}(458,\cdot)\) \(\chi_{759}(470,\cdot)\) \(\chi_{759}(479,\cdot)\) \(\chi_{759}(497,\cdot)\) \(\chi_{759}(503,\cdot)\) \(\chi_{759}(536,\cdot)\) \(\chi_{759}(557,\cdot)\) \(\chi_{759}(563,\cdot)\) \(\chi_{759}(569,\cdot)\) \(\chi_{759}(590,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 110 polynomial (not computed)

Values on generators

\((254,277,166)\) → \((-1,e\left(\frac{7}{10}\right),e\left(\frac{13}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(13\)\(14\)\(16\)\(17\)
\( \chi_{ 759 }(458, a) \) \(-1\)\(1\)\(e\left(\frac{21}{55}\right)\)\(e\left(\frac{42}{55}\right)\)\(e\left(\frac{49}{55}\right)\)\(e\left(\frac{7}{55}\right)\)\(e\left(\frac{8}{55}\right)\)\(e\left(\frac{3}{11}\right)\)\(e\left(\frac{107}{110}\right)\)\(e\left(\frac{28}{55}\right)\)\(e\left(\frac{29}{55}\right)\)\(e\left(\frac{103}{110}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 759 }(458,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 759 }(458,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 759 }(458,·),\chi_{ 759 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 759 }(458,·)) \;\) at \(\; a,b = \) e.g. 1,2