sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(759, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([55,77,65]))
pari:[g,chi] = znchar(Mod(458,759))
Modulus: | 759 | |
Conductor: | 759 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 110 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ759(17,⋅)
χ759(74,⋅)
χ759(83,⋅)
χ759(107,⋅)
χ759(134,⋅)
χ759(149,⋅)
χ759(182,⋅)
χ759(194,⋅)
χ759(227,⋅)
χ759(260,⋅)
χ759(272,⋅)
χ759(281,⋅)
χ759(293,⋅)
χ759(314,⋅)
χ759(332,⋅)
χ759(359,⋅)
χ759(365,⋅)
χ759(398,⋅)
χ759(425,⋅)
χ759(431,⋅)
χ759(458,⋅)
χ759(470,⋅)
χ759(479,⋅)
χ759(497,⋅)
χ759(503,⋅)
χ759(536,⋅)
χ759(557,⋅)
χ759(563,⋅)
χ759(569,⋅)
χ759(590,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(254,277,166) → (−1,e(107),e(2213))
a |
−1 | 1 | 2 | 4 | 5 | 7 | 8 | 10 | 13 | 14 | 16 | 17 |
χ759(458,a) |
−1 | 1 | e(5521) | e(5542) | e(5549) | e(557) | e(558) | e(113) | e(110107) | e(5528) | e(5529) | e(110103) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)