Properties

Label 759.bf
Modulus $759$
Conductor $759$
Order $110$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(759, base_ring=CyclotomicField(110))
 
M = H._module
 
chi = DirichletCharacter(H, M([55,99,35]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(17,759))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(759\)
Conductor: \(759\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(110\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 110 polynomial (not computed)

First 31 of 40 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(13\) \(14\) \(16\) \(17\)
\(\chi_{759}(17,\cdot)\) \(-1\) \(1\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{39}{110}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{91}{110}\right)\)
\(\chi_{759}(74,\cdot)\) \(-1\) \(1\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{103}{110}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{57}{110}\right)\)
\(\chi_{759}(83,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{29}{110}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{31}{110}\right)\)
\(\chi_{759}(107,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{13}{110}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{67}{110}\right)\)
\(\chi_{759}(134,\cdot)\) \(-1\) \(1\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{71}{110}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{19}{110}\right)\)
\(\chi_{759}(149,\cdot)\) \(-1\) \(1\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{69}{110}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{51}{110}\right)\)
\(\chi_{759}(182,\cdot)\) \(-1\) \(1\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{19}{110}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{81}{110}\right)\)
\(\chi_{759}(194,\cdot)\) \(-1\) \(1\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{67}{110}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{83}{110}\right)\)
\(\chi_{759}(227,\cdot)\) \(-1\) \(1\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{97}{110}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{43}{110}\right)\)
\(\chi_{759}(260,\cdot)\) \(-1\) \(1\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{87}{110}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{93}{110}\right)\)
\(\chi_{759}(272,\cdot)\) \(-1\) \(1\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{93}{110}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{107}{110}\right)\)
\(\chi_{759}(281,\cdot)\) \(-1\) \(1\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{59}{110}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{101}{110}\right)\)
\(\chi_{759}(293,\cdot)\) \(-1\) \(1\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{17}{110}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{3}{110}\right)\)
\(\chi_{759}(314,\cdot)\) \(-1\) \(1\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{79}{110}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{1}{110}\right)\)
\(\chi_{759}(332,\cdot)\) \(-1\) \(1\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{1}{110}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{39}{110}\right)\)
\(\chi_{759}(359,\cdot)\) \(-1\) \(1\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{7}{110}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{53}{110}\right)\)
\(\chi_{759}(365,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{31}{110}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{109}{110}\right)\)
\(\chi_{759}(398,\cdot)\) \(-1\) \(1\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{21}{110}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{49}{110}\right)\)
\(\chi_{759}(425,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{47}{110}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{73}{110}\right)\)
\(\chi_{759}(431,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{61}{110}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{69}{110}\right)\)
\(\chi_{759}(458,\cdot)\) \(-1\) \(1\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{107}{110}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{103}{110}\right)\)
\(\chi_{759}(470,\cdot)\) \(-1\) \(1\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{23}{110}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{17}{110}\right)\)
\(\chi_{759}(479,\cdot)\) \(-1\) \(1\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{49}{110}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{41}{110}\right)\)
\(\chi_{759}(497,\cdot)\) \(-1\) \(1\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{51}{110}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{9}{110}\right)\)
\(\chi_{759}(503,\cdot)\) \(-1\) \(1\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{53}{110}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{87}{110}\right)\)
\(\chi_{759}(536,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{43}{110}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{27}{110}\right)\)
\(\chi_{759}(557,\cdot)\) \(-1\) \(1\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{37}{110}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{13}{110}\right)\)
\(\chi_{759}(563,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{91}{110}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{29}{110}\right)\)
\(\chi_{759}(569,\cdot)\) \(-1\) \(1\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{83}{110}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{47}{110}\right)\)
\(\chi_{759}(590,\cdot)\) \(-1\) \(1\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{57}{110}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{23}{110}\right)\)
\(\chi_{759}(596,\cdot)\) \(-1\) \(1\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{41}{110}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{59}{110}\right)\)