sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7623, base_ring=CyclotomicField(330))
M = H._module
chi = DirichletCharacter(H, M([165,55,6]))
pari:[g,chi] = znchar(Mod(1214,7623))
χ7623(26,⋅)
χ7623(80,⋅)
χ7623(152,⋅)
χ7623(278,⋅)
χ7623(467,⋅)
χ7623(521,⋅)
χ7623(647,⋅)
χ7623(719,⋅)
χ7623(773,⋅)
χ7623(845,⋅)
χ7623(962,⋅)
χ7623(1160,⋅)
χ7623(1214,⋅)
χ7623(1466,⋅)
χ7623(1538,⋅)
χ7623(1655,⋅)
χ7623(1664,⋅)
χ7623(1853,⋅)
χ7623(1907,⋅)
χ7623(2033,⋅)
χ7623(2105,⋅)
χ7623(2159,⋅)
χ7623(2231,⋅)
χ7623(2348,⋅)
χ7623(2357,⋅)
χ7623(2546,⋅)
χ7623(2600,⋅)
χ7623(2726,⋅)
χ7623(2798,⋅)
χ7623(2852,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(848,4357,4600) → (−1,e(61),e(551))
a |
−1 | 1 | 2 | 4 | 5 | 8 | 10 | 13 | 16 | 17 | 19 | 20 |
χ7623(1214,a) |
1 | 1 | e(330281) | e(165116) | e(165112) | e(11061) | e(6635) | e(11037) | e(16567) | e(16592) | e(330113) | e(5521) |
sage:chi.jacobi_sum(n)