Basic properties
Modulus: | \(7623\) | |
Conductor: | \(2541\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(330\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{2541}(80,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 7623.fr
\(\chi_{7623}(26,\cdot)\) \(\chi_{7623}(80,\cdot)\) \(\chi_{7623}(152,\cdot)\) \(\chi_{7623}(278,\cdot)\) \(\chi_{7623}(467,\cdot)\) \(\chi_{7623}(521,\cdot)\) \(\chi_{7623}(647,\cdot)\) \(\chi_{7623}(719,\cdot)\) \(\chi_{7623}(773,\cdot)\) \(\chi_{7623}(845,\cdot)\) \(\chi_{7623}(962,\cdot)\) \(\chi_{7623}(1160,\cdot)\) \(\chi_{7623}(1214,\cdot)\) \(\chi_{7623}(1466,\cdot)\) \(\chi_{7623}(1538,\cdot)\) \(\chi_{7623}(1655,\cdot)\) \(\chi_{7623}(1664,\cdot)\) \(\chi_{7623}(1853,\cdot)\) \(\chi_{7623}(1907,\cdot)\) \(\chi_{7623}(2033,\cdot)\) \(\chi_{7623}(2105,\cdot)\) \(\chi_{7623}(2159,\cdot)\) \(\chi_{7623}(2231,\cdot)\) \(\chi_{7623}(2348,\cdot)\) \(\chi_{7623}(2357,\cdot)\) \(\chi_{7623}(2546,\cdot)\) \(\chi_{7623}(2600,\cdot)\) \(\chi_{7623}(2726,\cdot)\) \(\chi_{7623}(2798,\cdot)\) \(\chi_{7623}(2852,\cdot)\) ...
Related number fields
Field of values: | $\Q(\zeta_{165})$ |
Fixed field: | Number field defined by a degree 330 polynomial (not computed) |
Values on generators
\((848,4357,4600)\) → \((-1,e\left(\frac{1}{6}\right),e\left(\frac{39}{55}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(13\) | \(16\) | \(17\) | \(19\) | \(20\) |
\( \chi_{ 7623 }(80, a) \) | \(1\) | \(1\) | \(e\left(\frac{179}{330}\right)\) | \(e\left(\frac{14}{165}\right)\) | \(e\left(\frac{133}{165}\right)\) | \(e\left(\frac{69}{110}\right)\) | \(e\left(\frac{23}{66}\right)\) | \(e\left(\frac{13}{110}\right)\) | \(e\left(\frac{28}{165}\right)\) | \(e\left(\frac{68}{165}\right)\) | \(e\left(\frac{227}{330}\right)\) | \(e\left(\frac{49}{55}\right)\) |