Properties

Label 7800.mh
Modulus $7800$
Conductor $2600$
Order $60$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7800, base_ring=CyclotomicField(60))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,30,0,3,25]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(877,7800))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(7800\)
Conductor: \(2600\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(60\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 2600.fz
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(11\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{7800}(877,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{7800}(973,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{7800}(1237,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{7800}(1333,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{7800}(2437,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{7800}(2533,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{7800}(2797,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{7800}(3997,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{7800}(4453,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{7800}(5653,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{7800}(5917,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{7800}(6013,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{7800}(7117,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{7800}(7213,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{7800}(7477,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{7800}(7573,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{7}{12}\right)\)