sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7800, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([0,30,0,27,5]))
pari:[g,chi] = znchar(Mod(1237,7800))
χ7800(877,⋅)
χ7800(973,⋅)
χ7800(1237,⋅)
χ7800(1333,⋅)
χ7800(2437,⋅)
χ7800(2533,⋅)
χ7800(2797,⋅)
χ7800(3997,⋅)
χ7800(4453,⋅)
χ7800(5653,⋅)
χ7800(5917,⋅)
χ7800(6013,⋅)
χ7800(7117,⋅)
χ7800(7213,⋅)
χ7800(7477,⋅)
χ7800(7573,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1951,3901,5201,7177,4201) → (1,−1,1,e(209),e(121))
a |
−1 | 1 | 7 | 11 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 |
χ7800(1237,a) |
1 | 1 | e(61) | e(6017) | e(601) | e(601) | e(6047) | e(1511) | e(207) | e(152) | e(6053) | e(125) |
sage:chi.jacobi_sum(n)