Properties

Label 784.467
Modulus 784784
Conductor 784784
Order 8484
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(784, base_ring=CyclotomicField(84))
 
M = H._module
 
chi = DirichletCharacter(H, M([42,63,34]))
 
pari: [g,chi] = znchar(Mod(467,784))
 

Basic properties

Modulus: 784784
Conductor: 784784
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 8484
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 784.bu

χ784(3,)\chi_{784}(3,\cdot) χ784(59,)\chi_{784}(59,\cdot) χ784(75,)\chi_{784}(75,\cdot) χ784(115,)\chi_{784}(115,\cdot) χ784(131,)\chi_{784}(131,\cdot) χ784(171,)\chi_{784}(171,\cdot) χ784(187,)\chi_{784}(187,\cdot) χ784(243,)\chi_{784}(243,\cdot) χ784(283,)\chi_{784}(283,\cdot) χ784(299,)\chi_{784}(299,\cdot) χ784(339,)\chi_{784}(339,\cdot) χ784(355,)\chi_{784}(355,\cdot) χ784(395,)\chi_{784}(395,\cdot) χ784(451,)\chi_{784}(451,\cdot) χ784(467,)\chi_{784}(467,\cdot) χ784(507,)\chi_{784}(507,\cdot) χ784(523,)\chi_{784}(523,\cdot) χ784(563,)\chi_{784}(563,\cdot) χ784(579,)\chi_{784}(579,\cdot) χ784(635,)\chi_{784}(635,\cdot) χ784(675,)\chi_{784}(675,\cdot) χ784(691,)\chi_{784}(691,\cdot) χ784(731,)\chi_{784}(731,\cdot) χ784(747,)\chi_{784}(747,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ84)\Q(\zeta_{84})
Fixed field: Number field defined by a degree 84 polynomial

Values on generators

(687,197,689)(687,197,689)(1,i,e(1742))(-1,-i,e\left(\frac{17}{42}\right))

First values

aa 1-1113355991111131315151717191923232525
χ784(467,a) \chi_{ 784 }(467, a) 1111e(1384)e\left(\frac{13}{84}\right)e(4184)e\left(\frac{41}{84}\right)e(1342)e\left(\frac{13}{42}\right)e(3784)e\left(\frac{37}{84}\right)e(1728)e\left(\frac{17}{28}\right)e(914)e\left(\frac{9}{14}\right)e(542)e\left(\frac{5}{42}\right)e(1112)e\left(\frac{11}{12}\right)e(821)e\left(\frac{8}{21}\right)e(4142)e\left(\frac{41}{42}\right)
sage: chi.jacobi_sum(n)
 
χ784(467,a)   \chi_{ 784 }(467,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ784(467,))   \tau_{ a }( \chi_{ 784 }(467,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ784(467,),χ784(n,))   J(\chi_{ 784 }(467,·),\chi_{ 784 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ784(467,))  K(a,b,\chi_{ 784 }(467,·)) \; at   a,b=\; a,b = e.g. 1,2