sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(784, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([42,21,82]))
pari:[g,chi] = znchar(Mod(523,784))
Modulus: | 784 | |
Conductor: | 784 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 84 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ784(3,⋅)
χ784(59,⋅)
χ784(75,⋅)
χ784(115,⋅)
χ784(131,⋅)
χ784(171,⋅)
χ784(187,⋅)
χ784(243,⋅)
χ784(283,⋅)
χ784(299,⋅)
χ784(339,⋅)
χ784(355,⋅)
χ784(395,⋅)
χ784(451,⋅)
χ784(467,⋅)
χ784(507,⋅)
χ784(523,⋅)
χ784(563,⋅)
χ784(579,⋅)
χ784(635,⋅)
χ784(675,⋅)
χ784(691,⋅)
χ784(731,⋅)
χ784(747,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(687,197,689) → (−1,i,e(4241))
a |
−1 | 1 | 3 | 5 | 9 | 11 | 13 | 15 | 17 | 19 | 23 | 25 |
χ784(523,a) |
1 | 1 | e(8419) | e(8447) | e(4219) | e(8467) | e(2827) | e(1411) | e(4217) | e(125) | e(212) | e(425) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)