Properties

Label 7840.6579
Modulus $7840$
Conductor $7840$
Order $56$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7840, base_ring=CyclotomicField(56))
 
M = H._module
 
chi = DirichletCharacter(H, M([28,49,28,44]))
 
pari: [g,chi] = znchar(Mod(6579,7840))
 

Basic properties

Modulus: \(7840\)
Conductor: \(7840\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(56\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 7840.ha

\(\chi_{7840}(139,\cdot)\) \(\chi_{7840}(419,\cdot)\) \(\chi_{7840}(699,\cdot)\) \(\chi_{7840}(1259,\cdot)\) \(\chi_{7840}(1539,\cdot)\) \(\chi_{7840}(1819,\cdot)\) \(\chi_{7840}(2099,\cdot)\) \(\chi_{7840}(2379,\cdot)\) \(\chi_{7840}(2659,\cdot)\) \(\chi_{7840}(3219,\cdot)\) \(\chi_{7840}(3499,\cdot)\) \(\chi_{7840}(3779,\cdot)\) \(\chi_{7840}(4059,\cdot)\) \(\chi_{7840}(4339,\cdot)\) \(\chi_{7840}(4619,\cdot)\) \(\chi_{7840}(5179,\cdot)\) \(\chi_{7840}(5459,\cdot)\) \(\chi_{7840}(5739,\cdot)\) \(\chi_{7840}(6019,\cdot)\) \(\chi_{7840}(6299,\cdot)\) \(\chi_{7840}(6579,\cdot)\) \(\chi_{7840}(7139,\cdot)\) \(\chi_{7840}(7419,\cdot)\) \(\chi_{7840}(7699,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{56})$
Fixed field: Number field defined by a degree 56 polynomial

Values on generators

\((1471,4901,3137,3041)\) → \((-1,e\left(\frac{7}{8}\right),-1,e\left(\frac{11}{14}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(17\)\(19\)\(23\)\(27\)\(29\)\(31\)
\( \chi_{ 7840 }(6579, a) \) \(1\)\(1\)\(e\left(\frac{23}{56}\right)\)\(e\left(\frac{23}{28}\right)\)\(e\left(\frac{17}{56}\right)\)\(e\left(\frac{31}{56}\right)\)\(e\left(\frac{9}{14}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{3}{28}\right)\)\(e\left(\frac{13}{56}\right)\)\(e\left(\frac{43}{56}\right)\)\(1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 7840 }(6579,a) \;\) at \(\;a = \) e.g. 2