Properties

Label 7840.ha
Modulus $7840$
Conductor $7840$
Order $56$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7840, base_ring=CyclotomicField(56))
 
M = H._module
 
chi = DirichletCharacter(H, M([28,35,28,20]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(139,7840))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(7840\)
Conductor: \(7840\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(56\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{56})$
Fixed field: Number field defined by a degree 56 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(9\) \(11\) \(13\) \(17\) \(19\) \(23\) \(27\) \(29\) \(31\)
\(\chi_{7840}(139,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{56}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{51}{56}\right)\) \(e\left(\frac{37}{56}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{39}{56}\right)\) \(e\left(\frac{17}{56}\right)\) \(1\)
\(\chi_{7840}(419,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{56}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{13}{56}\right)\) \(e\left(\frac{27}{56}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{33}{56}\right)\) \(e\left(\frac{23}{56}\right)\) \(1\)
\(\chi_{7840}(699,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{56}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{31}{56}\right)\) \(e\left(\frac{17}{56}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{27}{56}\right)\) \(e\left(\frac{29}{56}\right)\) \(1\)
\(\chi_{7840}(1259,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{56}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{11}{56}\right)\) \(e\left(\frac{53}{56}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{15}{56}\right)\) \(e\left(\frac{41}{56}\right)\) \(1\)
\(\chi_{7840}(1539,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{56}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{29}{56}\right)\) \(e\left(\frac{43}{56}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{9}{56}\right)\) \(e\left(\frac{47}{56}\right)\) \(1\)
\(\chi_{7840}(1819,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{56}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{47}{56}\right)\) \(e\left(\frac{33}{56}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{3}{56}\right)\) \(e\left(\frac{53}{56}\right)\) \(1\)
\(\chi_{7840}(2099,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{56}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{9}{56}\right)\) \(e\left(\frac{23}{56}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{53}{56}\right)\) \(e\left(\frac{3}{56}\right)\) \(1\)
\(\chi_{7840}(2379,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{56}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{27}{56}\right)\) \(e\left(\frac{13}{56}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{47}{56}\right)\) \(e\left(\frac{9}{56}\right)\) \(1\)
\(\chi_{7840}(2659,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{56}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{45}{56}\right)\) \(e\left(\frac{3}{56}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{41}{56}\right)\) \(e\left(\frac{15}{56}\right)\) \(1\)
\(\chi_{7840}(3219,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{56}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{25}{56}\right)\) \(e\left(\frac{39}{56}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{29}{56}\right)\) \(e\left(\frac{27}{56}\right)\) \(1\)
\(\chi_{7840}(3499,\cdot)\) \(1\) \(1\) \(e\left(\frac{45}{56}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{43}{56}\right)\) \(e\left(\frac{29}{56}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{23}{56}\right)\) \(e\left(\frac{33}{56}\right)\) \(1\)
\(\chi_{7840}(3779,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{56}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{5}{56}\right)\) \(e\left(\frac{19}{56}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{17}{56}\right)\) \(e\left(\frac{39}{56}\right)\) \(1\)
\(\chi_{7840}(4059,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{56}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{23}{56}\right)\) \(e\left(\frac{9}{56}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{11}{56}\right)\) \(e\left(\frac{45}{56}\right)\) \(1\)
\(\chi_{7840}(4339,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{56}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{41}{56}\right)\) \(e\left(\frac{55}{56}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{5}{56}\right)\) \(e\left(\frac{51}{56}\right)\) \(1\)
\(\chi_{7840}(4619,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{56}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{3}{56}\right)\) \(e\left(\frac{45}{56}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{55}{56}\right)\) \(e\left(\frac{1}{56}\right)\) \(1\)
\(\chi_{7840}(5179,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{56}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{39}{56}\right)\) \(e\left(\frac{25}{56}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{43}{56}\right)\) \(e\left(\frac{13}{56}\right)\) \(1\)
\(\chi_{7840}(5459,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{56}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{1}{56}\right)\) \(e\left(\frac{15}{56}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{37}{56}\right)\) \(e\left(\frac{19}{56}\right)\) \(1\)
\(\chi_{7840}(5739,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{56}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{19}{56}\right)\) \(e\left(\frac{5}{56}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{31}{56}\right)\) \(e\left(\frac{25}{56}\right)\) \(1\)
\(\chi_{7840}(6019,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{56}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{37}{56}\right)\) \(e\left(\frac{51}{56}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{25}{56}\right)\) \(e\left(\frac{31}{56}\right)\) \(1\)
\(\chi_{7840}(6299,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{56}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{55}{56}\right)\) \(e\left(\frac{41}{56}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{19}{56}\right)\) \(e\left(\frac{37}{56}\right)\) \(1\)
\(\chi_{7840}(6579,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{56}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{17}{56}\right)\) \(e\left(\frac{31}{56}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{13}{56}\right)\) \(e\left(\frac{43}{56}\right)\) \(1\)
\(\chi_{7840}(7139,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{56}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{53}{56}\right)\) \(e\left(\frac{11}{56}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{1}{56}\right)\) \(e\left(\frac{55}{56}\right)\) \(1\)
\(\chi_{7840}(7419,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{56}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{15}{56}\right)\) \(e\left(\frac{1}{56}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{51}{56}\right)\) \(e\left(\frac{5}{56}\right)\) \(1\)
\(\chi_{7840}(7699,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{56}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{33}{56}\right)\) \(e\left(\frac{47}{56}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{45}{56}\right)\) \(e\left(\frac{11}{56}\right)\) \(1\)