from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8043, base_ring=CyclotomicField(1146))
M = H._module
chi = DirichletCharacter(H, M([573,955,450]))
pari: [g,chi] = znchar(Mod(152,8043))
χ8043(17,⋅)
χ8043(38,⋅)
χ8043(68,⋅)
χ8043(101,⋅)
χ8043(110,⋅)
χ8043(143,⋅)
χ8043(152,⋅)
χ8043(173,⋅)
χ8043(185,⋅)
χ8043(206,⋅)
χ8043(227,⋅)
χ8043(248,⋅)
χ8043(278,⋅)
χ8043(353,⋅)
χ8043(395,⋅)
χ8043(404,⋅)
χ8043(425,⋅)
χ8043(437,⋅)
χ8043(446,⋅)
χ8043(458,⋅)
χ8043(467,⋅)
χ8043(479,⋅)
χ8043(509,⋅)
χ8043(521,⋅)
χ8043(530,⋅)
χ8043(551,⋅)
χ8043(572,⋅)
χ8043(584,⋅)
χ8043(626,⋅)
χ8043(635,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(5363,2299,6133) → (−1,e(65),e(19175))
a |
−1 | 1 | 2 | 4 | 5 | 8 | 10 | 11 | 13 | 16 | 17 | 19 |
χ8043(152,a) |
1 | 1 | e(1146899) | e(573326) | e(57334) | e(382135) | e(1146967) | e(1146355) | e(382215) | e(57379) | e(573338) | e(1146245) |