Properties

Label 8043.509
Modulus 80438043
Conductor 80438043
Order 11461146
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8043, base_ring=CyclotomicField(1146))
 
M = H._module
 
chi = DirichletCharacter(H, M([573,955,1098]))
 
pari: [g,chi] = znchar(Mod(509,8043))
 

Basic properties

Modulus: 80438043
Conductor: 80438043
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 11461146
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8043.bb

χ8043(17,)\chi_{8043}(17,\cdot) χ8043(38,)\chi_{8043}(38,\cdot) χ8043(68,)\chi_{8043}(68,\cdot) χ8043(101,)\chi_{8043}(101,\cdot) χ8043(110,)\chi_{8043}(110,\cdot) χ8043(143,)\chi_{8043}(143,\cdot) χ8043(152,)\chi_{8043}(152,\cdot) χ8043(173,)\chi_{8043}(173,\cdot) χ8043(185,)\chi_{8043}(185,\cdot) χ8043(206,)\chi_{8043}(206,\cdot) χ8043(227,)\chi_{8043}(227,\cdot) χ8043(248,)\chi_{8043}(248,\cdot) χ8043(278,)\chi_{8043}(278,\cdot) χ8043(353,)\chi_{8043}(353,\cdot) χ8043(395,)\chi_{8043}(395,\cdot) χ8043(404,)\chi_{8043}(404,\cdot) χ8043(425,)\chi_{8043}(425,\cdot) χ8043(437,)\chi_{8043}(437,\cdot) χ8043(446,)\chi_{8043}(446,\cdot) χ8043(458,)\chi_{8043}(458,\cdot) χ8043(467,)\chi_{8043}(467,\cdot) χ8043(479,)\chi_{8043}(479,\cdot) χ8043(509,)\chi_{8043}(509,\cdot) χ8043(521,)\chi_{8043}(521,\cdot) χ8043(530,)\chi_{8043}(530,\cdot) χ8043(551,)\chi_{8043}(551,\cdot) χ8043(572,)\chi_{8043}(572,\cdot) χ8043(584,)\chi_{8043}(584,\cdot) χ8043(626,)\chi_{8043}(626,\cdot) χ8043(635,)\chi_{8043}(635,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ573)\Q(\zeta_{573})
Fixed field: Number field defined by a degree 1146 polynomial (not computed)

Values on generators

(5363,2299,6133)(5363,2299,6133)(1,e(56),e(183191))(-1,e\left(\frac{5}{6}\right),e\left(\frac{183}{191}\right))

First values

aa 1-11122445588101011111313161617171919
χ8043(509,a) \chi_{ 8043 }(509, a) 1111e(6351146)e\left(\frac{635}{1146}\right)e(62573)e\left(\frac{62}{573}\right)e(358573)e\left(\frac{358}{573}\right)e(253382)e\left(\frac{253}{382}\right)e(2051146)e\left(\frac{205}{1146}\right)e(6371146)e\left(\frac{637}{1146}\right)e(219382)e\left(\frac{219}{382}\right)e(124573)e\left(\frac{124}{573}\right)e(458573)e\left(\frac{458}{573}\right)e(8271146)e\left(\frac{827}{1146}\right)
sage: chi.jacobi_sum(n)
 
χ8043(509,a)   \chi_{ 8043 }(509,a) \; at   a=\;a = e.g. 2