sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8043, base_ring=CyclotomicField(1146))
M = H._module
chi = DirichletCharacter(H, M([573,764,864]))
pari:[g,chi] = znchar(Mod(32,8043))
Modulus: | 8043 | |
Conductor: | 8043 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 1146 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ8043(2,⋅)
χ8043(23,⋅)
χ8043(32,⋅)
χ8043(65,⋅)
χ8043(86,⋅)
χ8043(116,⋅)
χ8043(128,⋅)
χ8043(137,⋅)
χ8043(149,⋅)
χ8043(200,⋅)
χ8043(242,⋅)
χ8043(263,⋅)
χ8043(284,⋅)
χ8043(305,⋅)
χ8043(317,⋅)
χ8043(338,⋅)
χ8043(368,⋅)
χ8043(389,⋅)
χ8043(401,⋅)
χ8043(410,⋅)
χ8043(431,⋅)
χ8043(452,⋅)
χ8043(464,⋅)
χ8043(485,⋅)
χ8043(527,⋅)
χ8043(536,⋅)
χ8043(548,⋅)
χ8043(557,⋅)
χ8043(569,⋅)
χ8043(578,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(5363,2299,6133) → (−1,e(32),e(191144))
a |
−1 | 1 | 2 | 4 | 5 | 8 | 10 | 11 | 13 | 16 | 17 | 19 |
χ8043(32,a) |
−1 | 1 | e(1146985) | e(573412) | e(1146673) | e(382221) | e(573256) | e(1146185) | e(191130) | e(573251) | e(1146893) | e(573197) |
sage:chi.jacobi_sum(n)