Properties

Label 8043.65
Modulus $8043$
Conductor $8043$
Order $1146$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8043, base_ring=CyclotomicField(1146))
 
M = H._module
 
chi = DirichletCharacter(H, M([573,382,714]))
 
pari: [g,chi] = znchar(Mod(65,8043))
 

Basic properties

Modulus: \(8043\)
Conductor: \(8043\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(1146\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8043.z

\(\chi_{8043}(2,\cdot)\) \(\chi_{8043}(23,\cdot)\) \(\chi_{8043}(32,\cdot)\) \(\chi_{8043}(65,\cdot)\) \(\chi_{8043}(86,\cdot)\) \(\chi_{8043}(116,\cdot)\) \(\chi_{8043}(128,\cdot)\) \(\chi_{8043}(137,\cdot)\) \(\chi_{8043}(149,\cdot)\) \(\chi_{8043}(200,\cdot)\) \(\chi_{8043}(242,\cdot)\) \(\chi_{8043}(263,\cdot)\) \(\chi_{8043}(284,\cdot)\) \(\chi_{8043}(305,\cdot)\) \(\chi_{8043}(317,\cdot)\) \(\chi_{8043}(338,\cdot)\) \(\chi_{8043}(368,\cdot)\) \(\chi_{8043}(389,\cdot)\) \(\chi_{8043}(401,\cdot)\) \(\chi_{8043}(410,\cdot)\) \(\chi_{8043}(431,\cdot)\) \(\chi_{8043}(452,\cdot)\) \(\chi_{8043}(464,\cdot)\) \(\chi_{8043}(485,\cdot)\) \(\chi_{8043}(527,\cdot)\) \(\chi_{8043}(536,\cdot)\) \(\chi_{8043}(548,\cdot)\) \(\chi_{8043}(557,\cdot)\) \(\chi_{8043}(569,\cdot)\) \(\chi_{8043}(578,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{573})$
Fixed field: Number field defined by a degree 1146 polynomial (not computed)

Values on generators

\((5363,2299,6133)\) → \((-1,e\left(\frac{1}{3}\right),e\left(\frac{119}{191}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(17\)\(19\)
\( \chi_{ 8043 }(65, a) \) \(-1\)\(1\)\(e\left(\frac{749}{1146}\right)\)\(e\left(\frac{176}{573}\right)\)\(e\left(\frac{905}{1146}\right)\)\(e\left(\frac{367}{382}\right)\)\(e\left(\frac{254}{573}\right)\)\(e\left(\frac{385}{1146}\right)\)\(e\left(\frac{126}{191}\right)\)\(e\left(\frac{352}{573}\right)\)\(e\left(\frac{31}{1146}\right)\)\(e\left(\frac{379}{573}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 8043 }(65,a) \;\) at \(\;a = \) e.g. 2